llm-worker-rs/worker/src/llm/xai.rs

386 lines
14 KiB
Rust

use crate::core::LlmClientTrait;
use crate::types::WorkerError;
use worker_types::{DynamicToolDefinition, LlmProvider, Message, Role, StreamEvent, ToolCall};
use crate::config::UrlConfig;
use futures_util::{Stream, StreamExt};
use reqwest::Client;
use serde::{Deserialize, Serialize};
use serde_json::Value;
#[derive(Debug, Serialize)]
pub(crate) struct XAIRequest {
pub model: String,
pub messages: Vec<XAIMessage>,
#[serde(skip_serializing_if = "std::ops::Not::not")]
pub stream: bool,
#[serde(skip_serializing_if = "Option::is_none")]
pub tools: Option<Vec<XAITool>>,
#[serde(skip_serializing_if = "Option::is_none")]
pub max_tokens: Option<u32>,
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>,
}
#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct XAIMessage {
pub role: String,
pub content: String,
#[serde(skip_serializing_if = "Option::is_none")]
pub tool_calls: Option<Vec<XAIToolCall>>,
}
#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct XAIToolCall {
pub id: String,
#[serde(rename = "type")]
pub call_type: String,
pub function: XAIFunction,
}
#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct XAIFunction {
pub name: String,
pub arguments: String,
}
#[derive(Debug, Serialize, Clone)]
pub struct XAITool {
#[serde(rename = "type")]
pub tool_type: String,
pub function: XAIFunctionDef,
}
#[derive(Debug, Serialize, Clone)]
pub struct XAIFunctionDef {
pub name: String,
pub description: String,
pub parameters: Value,
}
#[derive(Debug, Deserialize)]
pub(crate) struct XAIResponse {
pub choices: Vec<XAIChoice>,
}
#[derive(Debug, Deserialize)]
pub struct XAIChoice {
pub message: XAIMessage,
#[serde(skip_serializing_if = "Option::is_none")]
pub delta: Option<XAIDelta>,
}
#[derive(Debug, Deserialize)]
pub struct XAIDelta {
pub content: Option<String>,
pub tool_calls: Option<Vec<XAIToolCall>>,
}
#[derive(Debug, Deserialize)]
pub struct XAIModel {
pub id: String,
pub object: String,
pub created: i64,
pub owned_by: String,
}
#[derive(Debug, Deserialize)]
pub struct XAIModelsResponse {
pub object: String,
pub data: Vec<XAIModel>,
}
pub struct XAIClient {
api_key: String,
model: String,
}
impl XAIClient {
pub fn new(api_key: &str, model: &str) -> Self {
Self {
api_key: api_key.to_string(),
model: model.to_string(),
}
}
pub fn get_model_name(&self) -> String {
self.model.clone()
}
}
use async_stream::stream;
impl XAIClient {
pub async fn chat_stream<'a>(
&'a self,
messages: Vec<Message>,
tools: Option<&[crate::types::DynamicToolDefinition]>,
llm_debug: Option<crate::types::LlmDebug>,
) -> Result<
Box<dyn Stream<Item = Result<StreamEvent, WorkerError>> + Unpin + Send + 'a>,
WorkerError,
> {
let client = Client::new();
let url = UrlConfig::get_completion_url("xai");
let xai_messages: Vec<XAIMessage> = messages
.into_iter()
.map(|msg| XAIMessage {
role: match msg.role {
Role::User => "user".to_string(),
Role::Model => "assistant".to_string(),
Role::System => "system".to_string(),
Role::Tool => "tool".to_string(),
},
content: msg.content,
tool_calls: None,
})
.collect();
let xai_tools = tools.map(|tools| {
tools
.iter()
.map(|tool| XAITool {
tool_type: "function".to_string(),
function: XAIFunctionDef {
name: tool.name.clone(),
description: tool.description.clone(),
parameters: tool.parameters_schema.clone(),
},
})
.collect()
});
let request = XAIRequest {
model: self.model.clone(),
messages: xai_messages,
stream: true,
tools: xai_tools,
max_tokens: None,
temperature: None,
};
let response = client
.post(url)
.header("Content-Type", "application/json")
.header("Authorization", format!("Bearer {}", self.api_key))
.json(&request)
.send()
.await
.map_err(|e| {
WorkerError::from_api_error(e.to_string(), &crate::types::LlmProvider::XAI)
})?;
if !response.status().is_success() {
let status = response.status();
let error_body = response.text().await.unwrap_or_default();
return Err(WorkerError::from_api_error(
format!("xAI API error: {} - {}", status, error_body),
&crate::types::LlmProvider::XAI,
));
}
let stream = stream! {
if let Some(ref debug) = llm_debug {
if let Some(debug_event) = debug.debug_request(&self.model, "xAI", &serde_json::to_value(&request).unwrap_or_default()) {
yield Ok(debug_event);
}
}
let mut stream = response.bytes_stream();
let mut buffer = String::new();
while let Some(chunk) = stream.next().await {
match chunk {
Ok(bytes) => {
let chunk_str = String::from_utf8_lossy(&bytes);
buffer.push_str(&chunk_str);
while let Some(line_end) = buffer.find('\n') {
let line = buffer[..line_end].to_string();
buffer = buffer[line_end + 1..].to_string();
if line.starts_with("data: ") {
let data = &line[6..];
if data == "[DONE]" {
yield Ok(StreamEvent::Completion(Message::new(
Role::Model,
"".to_string(),
)));
break;
}
match serde_json::from_str::<Value>(data) {
Ok(json_data) => {
if let Some(ref debug) = llm_debug {
if let Some(debug_event) = debug.debug_response(&self.model, "xAI", &json_data) {
yield Ok(debug_event);
}
}
if let Some(choices) = json_data.get("choices").and_then(|c| c.as_array()) {
for choice in choices {
if let Some(delta) = choice.get("delta") {
if let Some(content) = delta.get("content").and_then(|c| c.as_str()) {
yield Ok(StreamEvent::Chunk(content.to_string()));
}
if let Some(tool_calls) = delta.get("tool_calls").and_then(|tc| tc.as_array()) {
for tool_call in tool_calls {
if let Some(function) = tool_call.get("function") {
if let (Some(name), Some(arguments)) = (
function.get("name").and_then(|n| n.as_str()),
function.get("arguments").and_then(|a| a.as_str())
) {
let tool_call = ToolCall {
name: name.to_string(),
arguments: arguments.to_string(),
};
yield Ok(StreamEvent::ToolCall(tool_call));
}
}
}
}
}
}
}
}
Err(e) => {
tracing::warn!("Failed to parse xAI stream response: {}", e);
}
}
}
}
}
Err(e) => {
yield Err(WorkerError::from_api_error(e.to_string(), &crate::types::LlmProvider::XAI));
break;
}
}
}
};
Ok(Box::new(Box::pin(stream)))
}
pub async fn get_model_details(
&self,
model_id: &str,
) -> Result<crate::types::ModelInfo, WorkerError> {
let client = Client::new();
let url = UrlConfig::get_model_url("xai", model_id);
let response = client
.get(&url)
.header("Authorization", format!("Bearer {}", self.api_key))
.send()
.await
.map_err(|e| {
WorkerError::from_api_error(e.to_string(), &crate::types::LlmProvider::XAI)
})?;
if !response.status().is_success() {
return Err(WorkerError::from_api_error(
format!(
"xAI model details request failed with status: {}",
response.status()
),
&crate::types::LlmProvider::XAI,
));
}
let model_data: XAIModel = response.json().await.map_err(|e| {
WorkerError::from_api_error(e.to_string(), &crate::types::LlmProvider::XAI)
})?;
let supports_tools = true; // Will be determined by config
let supports_vision = false; // Will be determined by config
let context_length = None; // Will be determined by config
let capabilities = vec!["text_generation".to_string()]; // Basic default
let description = format!("xAI {} model ({})", model_data.id, model_data.owned_by);
Ok(crate::types::ModelInfo {
id: model_data.id.clone(),
name: format!("{} ({})", model_data.id, model_data.owned_by),
provider: crate::types::LlmProvider::XAI,
supports_tools,
supports_function_calling: supports_tools,
supports_vision,
supports_multimodal: supports_vision,
context_length,
training_cutoff: Some(
chrono::DateTime::from_timestamp(model_data.created, 0)
.map(|dt| dt.format("%Y-%m-%d").to_string())
.unwrap_or_else(|| "2024-12-12".to_string()),
),
capabilities,
description: Some(description),
})
}
pub async fn check_connection(&self) -> Result<(), WorkerError> {
let client = Client::new();
let url = UrlConfig::get_completion_url("xai");
let test_request = XAIRequest {
model: self.model.clone(),
messages: vec![XAIMessage {
role: "user".to_string(),
content: "Hi".to_string(),
tool_calls: None,
}],
stream: false,
tools: None,
max_tokens: Some(10),
temperature: Some(0.1),
};
let response = client
.post(url)
.header("Content-Type", "application/json")
.header("Authorization", format!("Bearer {}", self.api_key))
.json(&test_request)
.send()
.await
.map_err(|e| {
WorkerError::from_api_error(e.to_string(), &crate::types::LlmProvider::XAI)
})?;
if !response.status().is_success() {
let status = response.status();
let error_body = response.text().await.unwrap_or_default();
return Err(WorkerError::from_api_error(
format!("xAI connection test failed: {} - {}", status, error_body),
&crate::types::LlmProvider::XAI,
));
}
Ok(())
}
}
#[async_trait::async_trait]
impl LlmClientTrait for XAIClient {
async fn chat_stream<'a>(
&'a self,
messages: Vec<Message>,
tools: Option<&[DynamicToolDefinition]>,
llm_debug: Option<crate::types::LlmDebug>,
) -> Result<
Box<dyn Stream<Item = Result<StreamEvent, WorkerError>> + Unpin + Send + 'a>,
WorkerError,
> {
self.chat_stream(messages, tools, llm_debug).await
}
async fn check_connection(&self) -> Result<(), WorkerError> {
self.check_connection().await
}
fn provider(&self) -> LlmProvider {
LlmProvider::XAI
}
fn get_model_name(&self) -> String {
self.get_model_name()
}
}