Compare commits

...

19 Commits

Author SHA1 Message Date
aa4e48d53e Merge pull request 'alpha-release: 0.0.1' (#1) from develop into master
Reviewed-on: #1
2026-01-08 20:40:24 +09:00
a01f19b112 feat: Adjust module re-exports and publishing settings 2026-01-08 20:35:28 +09:00
9233bb9163 docs: Tidying up comments 2026-01-08 18:23:16 +09:00
2487d1ece7 feat: Implement worker context management and cache protection mechanisms using type-state 2026-01-08 17:57:03 +09:00
45c8457b71 feat: Cleaning up examples 2026-01-07 22:15:29 +09:00
1e126c1698 fmt: cargo fmt 2026-01-07 22:04:44 +09:00
bb73dc6a45 fix: inject missing block_type into Anthropic BlockStop events 2026-01-07 22:04:32 +09:00
1fbd4c8380 feat: Implement WorkerCLI to use multiple providers 2026-01-07 21:42:23 +09:00
a26d43c52d feat: add Google Gemini LLM client integration 2026-01-07 00:54:58 +09:00
89b12d277a feat: Introduce WorkerSubscriber system with adapters 2026-01-07 00:30:58 +09:00
9547d40538 docs: Add hooks_design.md 2026-01-07 00:26:10 +09:00
d04cae2a36 feat: Verify provider API ・ Modularize testing 2026-01-07 00:16:35 +09:00
a7581f27bb feat: Implement openai/ollama client 2026-01-06 23:50:05 +09:00
170c8708ae feat: Add worker CLI example 2026-01-06 22:58:04 +09:00
ddd80908c0 feat: #[tool_registry] and #[tool] macros 2026-01-06 22:42:24 +09:00
e82e0a3ed9 feat: Implement Worker for LLM turn management/tool call/hooks 2026-01-06 20:38:08 +09:00
a4e2795e56 feat: Add Tool trait definition and tool_registry macro skeleton 2026-01-06 13:52:32 +09:00
9a7acb74c8 feat: Implement AnthropicClient 2026-01-06 00:25:08 +09:00
6d6ae24ffe feat: Introduce event timeline and handler system 2026-01-05 23:10:32 +09:00
73 changed files with 13691 additions and 5 deletions

View File

@ -0,0 +1,109 @@
---
description: ドキュメントコメントの書き方ガイドライン
---
# ドキュメントコメント スタイルガイド
## 基本原則
1. **利用者視点で書く**: 「何をするものか」「どう使うか」を先に、「なぜそう実装したか」は後に
2. **型パラメータはバッククォートで囲む**: `Handler<K>` ✓ / Handler<K>
3. **Examplesは`worker::`パスで書く**: re-export先のパスを使用
## 構造テンプレート
```rust
/// [1行目: 何をするものか - 利用者が最初に知りたいこと]
///
/// [詳細説明: いつ使うか、なぜ使うか、注意点など]
///
/// # Examples
///
/// ```
/// use worker::SomeType;
///
/// let instance = SomeType::new();
/// instance.do_something();
/// ```
///
/// # Notes (オプション)
///
/// 実装上の注意事項や制限があれば記載
pub struct SomeType { ... }
```
## 良い例・悪い例
### 構造体/Trait
```rust
// ❌ 悪い例(実装視点)
/// Handler<K>からErasedHandler<K>へのラッパー
/// 各Handlerは独自のScope型を持つため、Timelineで保持するには型消去が必要
// ✅ 良い例(利用者視点)
/// `Handler<K>`を`ErasedHandler<K>`として扱うためのラッパー
///
/// 通常は直接使用せず、`Timeline::on_text_block()`などのメソッド経由で
/// 自動的にラップされます。
```
### メソッド
```rust
// ❌ 悪い例(処理内容の説明のみ)
/// ツールを登録する
// ✅ 良い例(何が起きるか、どう使うか)
/// ツールを登録する
///
/// 登録されたツールはLLMからの呼び出しで自動的に実行されます。
/// 同名のツールを登録した場合、後から登録したものが優先されます。
///
/// # Examples
///
/// ```
/// use worker::{Worker, Tool};
///
/// worker.register_tool(MyTool::new());
/// ```
```
### 型パラメータ
```rust
// ❌ HTMLタグとして解釈されてしまう
/// Handler<K>を保持するフィールド
// ✅ バッククォートで囲む
/// `Handler<K>`を保持するフィールド
```
## ドキュメントの配置
| 項目 | 配置場所 |
|-----|---------|
| 型/trait/関数のdoc | 定義元のクレートworker-types等 |
| モジュールdoc (`//!`) | 各クレートのlib.rsに書く |
| 実装詳細 | 実装コメント (`//`) を使用 |
| 利用者向けでない内部型 | `#[doc(hidden)]`または`pub(crate)` |
## Examplesのuseパス
re-exportされる型のExamplesでは、最終的な公開パスを使用:
```rust
// worker-types/src/tool.rs でも
/// # Examples
/// ```
/// use worker::Tool; // ✓ worker_types::Tool ではなく
/// ```
```
## チェックリスト
- [ ] 1行目は「何をするものか」を利用者視点で説明しているか
- [ ] 型パラメータ (`<T>`, `<K>` 等) はバッククォートで囲んでいるか
- [ ] 主要なpub APIにはExamplesがあるか
- [ ] Examplesの`use`パスは`worker::`になっているか
- [ ] `cargo doc --no-deps`で警告が出ないか

3
.env.example Normal file
View File

@ -0,0 +1,3 @@
ANTHROPIC_API_KEY=your_api_key
OPENAI_API_KEY=your_api_key
GEMINI_API_KEY=your_api_key

1
.gitignore vendored
View File

@ -1,2 +1,3 @@
/target
.direnv
.env

2164
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -24,9 +24,9 @@ worker
│ ├── scheme
│ │ └── openai, anthropic, gemini // APIスキーマ
│ ├── events
── providers
└── anthropic, googleai, ollama, etc... // プロバイダ
└── timeline
── providers
└── anthropic, googleai, ollama, etc... // プロバイダ
└── timeline
```
OpenAI互換のプロバイダでスキーマを使い回せるよう、schemeとプロバイダモジュールは分離されている

68
docs/spec/cache_lock.md Normal file
View File

@ -0,0 +1,68 @@
# KVキャッシュを中心とした設計
LLMのKVキャッシュのヒット率を重要なメトリクスであるとし、APIレベルでキャッシュ操作を中心とした設計を行う。
## 前提
リクエスト間キャッシュ(Context Caching)は、複数のリクエストで同じ入力トークン列が繰り返された際、プロバイダ側が計算済みの状態を再利用することでレイテンシと入力コストを下げる仕組みである。
キャッシュは主に**先頭一致 (Common Prefix)** によってHitするため、前提となるシステムプロンプトや、会話ログの過去部分前方を変化させると、以降のキャッシュは無効となる。
## 要件
1. **前方不変性の保証 (Prefix Immutability)**
* 後方に会話が追加されても、前方のデータシステムプロンプトや確定済みのメッセージ履歴が変化しないことをAPIレベルで保証する。
* これにより、意図しないキャッシュミスCache Missを防ぐ。
2. **データ上の再現性**
* コンテキストのデータ構造が同一であれば、生成されるリクエスト構造も同一であることを保証する。
* シリアライズ結果のバイト単位の完全一致までは求めないが、論理的なリクエスト構造は保たれる必要がある。
## アプローチ: Type-state Pattern
RustのType-stateパターンを利用し、Workerの状態によって利用可能な操作をコンパイル時に制限する。
### 1. 状態定義
* **`Mutable` (初期状態)**
* 自由な編集が可能な状態。
* システムプロンプトの設定・変更が可能。
* メッセージ履歴の初期構築(ロード、編集)が可能。
* **`Locked` (キャッシュ保護状態)**
* キャッシュの有効活用を目的とした、前方不変状態。
* **システムプロンプトの変更不可**。
* **既存メッセージ履歴の変更不可**(追記のみ許可)。
* 実行(`run`)はこの状態で行うことを推奨する。
### 2. 状態遷移とAPIイメージ
`Worker` 自身がコンテキスト(履歴)のオーナーとなり、状態によってアクセサを制限する。
```rust
// 1. Mutable状態で初期化
let mut worker: Worker<Mutable> = Worker::new(client);
// 2. コンテキストの構築 (Mutableなので自由に変更可)
worker.set_system_prompt("You are a helpful assistant.");
worker.history_mut().push(initial_message);
// 3. ロックしてLocked状態へ遷移
// これにより、ここまでのコンテキストが "Fixed Prefix" として扱われる
let mut locked_worker: Worker<Locked> = worker.lock();
// 4. 利用 (Locked状態)
// 実行は可能。新しいメッセージは履歴の末尾に追記される。
// 前方の履歴やシステムプロンプトは変更できないため、キャッシュヒットが保証される。
locked_worker.run(new_user_input).await?;
// NG操作 (コンパイルエラー)
// locked_worker.set_system_prompt("New prompt");
// locked_worker.history_mut().clear();
```
### 3. 実装への影響
現在の `Worker` 実装に対し、以下の変更が必要となる。
* **状態パラメータの導入**: `Worker<S: WorkerState>` の導入。
* **コンテキスト所有権の委譲**: `run` メソッドの引数でコンテキストを受け取るのではなく、`Worker` 内部に `history: Vec<Message>` を保持し管理する形へ移行する。
* **APIの分離**: `Mutable` 特有のメソッドsetter等と、`Locked` でも使えるメソッド(実行、参照等)をトレイト境界で分離する。

360
docs/spec/hooks_design.md Normal file
View File

@ -0,0 +1,360 @@
# Hooks 設計
## 概要
HookはWorker層でのターン制御に介入するためのメカニズムです。
Claude CodeのHooks機能に着想を得ており、メッセージ送信・ツール実行・ターン終了の各ポイントで処理を差し込むことができます。
## コンセプト
- **制御の介入**: ターンの進行、メッセージの内容、ツールの実行に対して介入
- **Contextへのアクセス**: メッセージ履歴を読み書き可能
- **非破壊的チェーン**: 複数のHookを登録順に実行、後続Hookへの影響を制御
## Hook Trait
```rust
#[async_trait]
pub trait WorkerHook: Send + Sync {
/// メッセージ送信前
/// リクエストに含まれるメッセージリストを改変できる
async fn on_message_send(
&self,
context: &mut Vec<Message>,
) -> Result<ControlFlow, HookError> {
Ok(ControlFlow::Continue)
}
/// ツール実行前
/// 実行をキャンセルしたり、引数を書き換えることができる
async fn before_tool_call(
&self,
tool_call: &mut ToolCall,
) -> Result<ControlFlow, HookError> {
Ok(ControlFlow::Continue)
}
/// ツール実行後
/// 結果を書き換えたり、隠蔽したりできる
async fn after_tool_call(
&self,
tool_result: &mut ToolResult,
) -> Result<ControlFlow, HookError> {
Ok(ControlFlow::Continue)
}
/// ターン終了時
/// 生成されたメッセージを検査し、必要ならリトライを指示できる
async fn on_turn_end(
&self,
messages: &[Message],
) -> Result<TurnResult, HookError> {
Ok(TurnResult::Finish)
}
}
```
## 制御フロー型
### ControlFlow
Hook処理の継続/中断を制御する列挙型。
```rust
pub enum ControlFlow {
/// 処理を続行後続Hookも実行
Continue,
/// 現在の処理をスキップ(ツール実行をスキップ等)
Skip,
/// 処理全体を中断(エラーとして扱う)
Abort(String),
}
```
### TurnResult
ターン終了時の判定結果を表す列挙型。
```rust
pub enum TurnResult {
/// ターンを正常終了
Finish,
/// メッセージを追加してターン継続(自己修正など)
ContinueWithMessages(Vec<Message>),
}
```
## 呼び出しタイミング
```
Worker::run() ループ
├─▶ on_message_send ──────────────────────────────┐
│ コンテキストの改変、バリデーション、 │
│ システムプロンプト注入などが可能 │
│ │
├─▶ LLMリクエスト送信 & ストリーム処理 │
│ │
├─▶ ツール呼び出しがある場合: │
│ │ │
│ ├─▶ before_tool_call (各ツールごと・逐次) │
│ │ 実行可否の判定、引数の改変 │
│ │ │
│ ├─▶ ツール並列実行 (join_all) │
│ │ │
│ └─▶ after_tool_call (各結果ごと・逐次) │
│ 結果の確認、加工、ログ出力 │
│ │
├─▶ ツール結果をコンテキストに追加 → ループ先頭へ │
│ │
└─▶ ツールなしの場合: │
│ │
└─▶ on_turn_end ─────────────────────────────┘
最終応答のチェックLint/Fmt等
エラーがあればContinueWithMessagesでリトライ
```
## 各Hookの詳細
### on_message_send
**呼び出しタイミング**: LLMへリクエスト送信前ターンループの冒頭
**用途**:
- コンテキストへのシステムメッセージ注入
- メッセージのバリデーション
- 機密情報のフィルタリング
- リクエスト内容のログ出力
**例**: メッセージにタイムスタンプを追加
```rust
struct TimestampHook;
#[async_trait]
impl WorkerHook for TimestampHook {
async fn on_message_send(
&self,
context: &mut Vec<Message>,
) -> Result<ControlFlow, HookError> {
let timestamp = chrono::Local::now().to_rfc3339();
context.insert(0, Message::user(format!("[{}]", timestamp)));
Ok(ControlFlow::Continue)
}
}
```
### before_tool_call
**呼び出しタイミング**: 各ツール実行前(並列実行フェーズの前)
**用途**:
- 危険なツールのブロック
- 引数のサニタイズ
- 確認プロンプトの表示UIとの連携
- 実行ログの記録
**例**: 特定ツールをブロック
```rust
struct ToolBlocker {
blocked_tools: HashSet<String>,
}
#[async_trait]
impl WorkerHook for ToolBlocker {
async fn before_tool_call(
&self,
tool_call: &mut ToolCall,
) -> Result<ControlFlow, HookError> {
if self.blocked_tools.contains(&tool_call.name) {
println!("Blocked tool: {}", tool_call.name);
Ok(ControlFlow::Skip)
} else {
Ok(ControlFlow::Continue)
}
}
}
```
### after_tool_call
**呼び出しタイミング**: 各ツール実行後(並列実行フェーズの後)
**用途**:
- 結果の加工・フォーマット
- 機密情報のマスキング
- 結果のキャッシュ
- 実行結果のログ出力
**例**: 結果にプレフィックスを追加
```rust
struct ResultFormatter;
#[async_trait]
impl WorkerHook for ResultFormatter {
async fn after_tool_call(
&self,
tool_result: &mut ToolResult,
) -> Result<ControlFlow, HookError> {
if !tool_result.is_error {
tool_result.content = format!("[OK] {}", tool_result.content);
}
Ok(ControlFlow::Continue)
}
}
```
### on_turn_end
**呼び出しタイミング**: ツール呼び出しなしでターンが終了する直前
**用途**:
- 生成されたコードのLint/Fmt
- 出力形式のバリデーション
- 自己修正のためのリトライ指示
- 最終結果のログ出力
**例**: JSON形式のバリデーション
```rust
struct JsonValidator;
#[async_trait]
impl WorkerHook for JsonValidator {
async fn on_turn_end(
&self,
messages: &[Message],
) -> Result<TurnResult, HookError> {
// 最後のアシスタントメッセージを取得
let last = messages.iter().rev()
.find(|m| m.role == Role::Assistant);
if let Some(msg) = last {
if let MessageContent::Text(text) = &msg.content {
// JSONとしてパースを試みる
if serde_json::from_str::<serde_json::Value>(text).is_err() {
// 失敗したらリトライ指示
return Ok(TurnResult::ContinueWithMessages(vec![
Message::user("Invalid JSON. Please fix and try again.")
]));
}
}
}
Ok(TurnResult::Finish)
}
}
```
## 複数Hookの実行順序
Hookは**登録順**に実行されます。
```rust
worker.add_hook(HookA); // 1番目に実行
worker.add_hook(HookB); // 2番目に実行
worker.add_hook(HookC); // 3番目に実行
```
### 制御フローの伝播
- `Continue`: 後続Hookも実行
- `Skip`: 現在の処理をスキップし、後続Hookは実行しない
- `Abort`: 即座にエラーを返し、処理全体を中断
```
Hook A: Continue → Hook B: Skip → (Hook Cは実行されない)
処理をスキップ
Hook A: Continue → Hook B: Abort("reason")
WorkerError::Aborted
```
## 設計上のポイント
### 1. デフォルト実装
全メソッドにデフォルト実装があるため、必要なメソッドだけオーバーライドすれば良い。
```rust
struct SimpleLogger;
#[async_trait]
impl WorkerHook for SimpleLogger {
// on_message_send だけ実装
async fn on_message_send(
&self,
context: &mut Vec<Message>,
) -> Result<ControlFlow, HookError> {
println!("Sending {} messages", context.len());
Ok(ControlFlow::Continue)
}
// 他のメソッドはデフォルトContinue/Finish
}
```
### 2. 可変参照による改変
`&mut`で引数を受け取るため、直接改変が可能。
```rust
async fn before_tool_call(&self, tool_call: &mut ToolCall) -> ... {
// 引数を直接書き換え
tool_call.input["sanitized"] = json!(true);
Ok(ControlFlow::Continue)
}
```
### 3. 並列実行との統合
- `before_tool_call`: 並列実行**前**に逐次実行(許可判定のため)
- ツール実行: `join_all`で**並列**実行
- `after_tool_call`: 並列実行**後**に逐次実行(結果加工のため)
### 4. Send + Sync 要件
`WorkerHook`は`Send + Sync`を要求するため、スレッドセーフな実装が必要。
状態を持つ場合は`Arc<Mutex<T>>`や`AtomicUsize`などを使用する。
```rust
struct CountingHook {
count: Arc<AtomicUsize>,
}
#[async_trait]
impl WorkerHook for CountingHook {
async fn before_tool_call(&self, _: &mut ToolCall) -> Result<ControlFlow, HookError> {
self.count.fetch_add(1, Ordering::SeqCst);
Ok(ControlFlow::Continue)
}
}
```
## 典型的なユースケース
| ユースケース | 使用Hook | 処理内容 |
|-------------|----------|----------|
| ツール許可制御 | `before_tool_call` | 危険なツールをSkip |
| 実行ログ | `before/after_tool_call` | 呼び出しと結果を記録 |
| 出力バリデーション | `on_turn_end` | 形式チェック、リトライ指示 |
| コンテキスト注入 | `on_message_send` | システムメッセージ追加 |
| 結果のサニタイズ | `after_tool_call` | 機密情報のマスキング |
| レート制限 | `before_tool_call` | 呼び出し頻度の制御 |
## TODO
### Hooks仕様の厳密な再定義
現在のHooks実装は基本的なユースケースをカバーしているが、以下の点について将来的に厳密な仕様を定義する必要がある
- **エラーハンドリングの明確化**: `HookError`発生時のリカバリー戦略、部分的な失敗の扱い
- **Hook間の依存関係**: 複数Hookの実行順序が結果に影響する場合のセマンティクス
- **非同期キャンセル**: Hook実行中のキャンセルタイムアウト等の振る舞い
- **状態の一貫性**: `on_message_send`で改変されたコンテキストが後続処理で期待通りに反映される保証
- **リトライ制限**: `on_turn_end`での`ContinueWithMessages`による無限ループ防止策
- **Hook優先度**: 登録順以外の優先度指定メカニズムの必要性
- **条件付きHook**: 特定条件でのみ有効化されるHookパターン
- **テスト容易性**: Hookのモック/スタブ作成のためのユーティリティ

436
docs/spec/worker_design.md Normal file
View File

@ -0,0 +1,436 @@
# Worker & Tool/Hook 設計
## 概要
`Worker`はアプリケーションの「ターン」を制御する高レベルコンポーネントです。
`LlmClient`と`Timeline`を内包し、ユーザー定義の`Tool`と`Hook`を用いて自律的なインタラクションを行います。
## アーキテクチャ
```mermaid
graph TD
User[Application / User] -->|1. Run| Worker
Worker -->|2. Event Loop| Timeline
Timeline -->|3. Dispatch| Handler[Handlers (inc. ToolExecutor)]
subgraph "Worker Layer"
Worker
Hook[Hooks]
end
subgraph "Core Layer"
Timeline
LlmClient
end
Worker -.->|Intervene| Hook
Handler -.->|Execute| Tool[User Defined Tools]
```
## ライフサイクル (ターン制御)
Workerは以下のループターンを実行します。
1. **Start Turn**: `Worker::run(messages)` 呼び出し
2. **Hook: OnMessageSend**:
* ユーザーメッセージの改変、バリデーション、キャンセルが可能。
* コンテキストへのシステムプロンプト注入などもここで行う想定。
3. **Request & Stream**:
* LLMへリクエスト送信。イベントストリーム開始。
* `Timeline`によるイベント処理。
4. **Tool Handling (Parallel)**:
* レスポンス内に含まれる全てのTool Callを収集。
* 各Toolに対して **Hook: BeforeToolCall** を実行(実行可否、引数改変)。
* 許可されたToolを**並列実行 (`join_all`)**。
* 各Tool実行後に **Hook: AfterToolCall** を実行(結果の確認、加工)。
5. **Next Request Decision**:
* Tool実行結果がある場合 -> 結果をMessageとしてContextに追加し、**Step 3へ戻る** (自動ループ)。
* Tool実行がない場合 -> Step 6へ。
6. **Hook: OnTurnEnd**:
* 最終的な応答に対するチェックLint/Fmt
* エラーがある場合、エラーメッセージをContextに追加して **Step 3へ戻る** ことで自己修正を促せる。
* 問題なければターン終了。
## Tool 設計
### アーキテクチャ概要
Rustの静的型付けシステムとLLMの動的なツール呼び出し文字列による指定を、**Trait Object** と **動的ディスパッチ** を用いて接続します。
1. **共通インターフェース (`Tool` Trait)**: 全てのツールが実装すべき共通の振る舞い(メタデータ取得と実行)を定義します。
2. **ラッパー生成 (`#[tool]` Macro)**: ユーザー定義のメソッドをラップし、`Tool` Traitを実装した構造体を自動生成します。
3. **レジストリ (`HashMap`)**: Workerは動的ディスパッチ用に `HashMap<String, Box<dyn Tool>>` でツールを管理します。
この仕組みにより、「名前からツールを探し、JSON引数を型変換して関数を実行する」フローを安全に実現します。
### 1. Tool Trait 定義
ツールが最低限持つべきインターフェースです。`Send + Sync` を必須とし、マルチスレッド(並列実行)に対応します。
```rust
#[async_trait]
pub trait Tool: Send + Sync {
/// ツール名 (LLMが識別に使用)
fn name(&self) -> &str;
/// ツールの説明 (LLMへのプロンプトに含まれる)
fn description(&self) -> &str;
/// 引数のJSON Schema (schemars等で生成)
fn input_schema(&self) -> serde_json::Value;
/// 実行関数
/// JSON文字列を受け取り、デシリアライズして元のメソッドを実行し、結果を返す
async fn execute(&self, input_json: &str) -> Result<String, ToolError>;
}
```
### 2. マクロと実装モデル
ユーザーは「状態を持つ構造体」とその「メソッド」としてツールを定義します。
**ユーザーコード:**
```rust
#[derive(Clone)] // 状態はClone (Arc推奨) で共有される想定
struct MyApp {
db: Arc<Database>,
}
impl MyApp {
/// ユーザー情報を取得する
/// 指定されたIDのユーザーをDBから検索します。
#[tool]
async fn get_user(
&self,
#[description = "取得したいユーザーのID"] user_id: String
) -> Result<User, Error> {
let user = self.db.find(&user_id).await?;
Ok(user)
}
}
```
**マクロ展開後のイメージ (擬似コード):**
マクロは、元のメソッドに対応する**ラッパー構造体**を生成します。このラッパーが `Tool` Trait を実装します。
```rust
// 1. 引数をデシリアライズ用の中間構造体に変換
#[derive(serde::Deserialize, schemars::JsonSchema)]
struct GetUserArgs {
/// 取得したいユーザーのID
user_id: String,
}
// 2. ラッパー構造体 (元のコンテキストを持つ)
struct GetUserTool {
ctx: MyApp, // コンテキストを保持 (Clone)
}
#[async_trait]
impl Tool for GetUserTool {
fn name(&self) -> &str { "get_user" }
fn description(&self) -> &str { "ユーザー情報を取得する\n指定されたIDのユーザーをDBから検索します。" }
fn input_schema(&self) -> serde_json::Value {
schemars::schema_for!(GetUserArgs)
}
async fn execute(&self, input_json: &str) -> Result<String, ToolError> {
// A. JSONを引数構造体に変換
let args: GetUserArgs = serde_json::from_str(input_json)
.map_err(|e| ToolError::InvalidArgument(e.to_string()))?;
// B. 元のメソッド呼び出し (self.ctx 経由)
let result = self.ctx.get_user(args.user_id).await
.map_err(|e| ToolError::ExecutionFailed(e.to_string()))?;
// C. 結果を文字列化
Ok(format!("{:?}", result)) // または serde_json::to_string(&result)
}
}
```
### 3. Workerによる実行フロー
Workerは生成されたラッパー構造体を `Box<dyn Tool>` として保持し、以下のフローで実行します。
1. **登録**: アプリケーション開始時、コンテキスト(`MyApp`)から各ツールのラッパー(`GetUserTool`)を生成し、WorkerのMapに登録。
2. **解決**: LLMからのレスポンスに含まれる `ToolUse { name: "get_user", ... }` を受け取る。
3. **検索**: `name` をキーに Map から `Box<dyn Tool>` を取得。
4. **実行**:
* `tool.execute(json)` を呼び出す。
* 内部で `serde_json` による型変換とメソッド実行が行われる。
* 結果が返る。
これにより、型安全性を保ちつつ、動的なツール実行が可能になります。
## Hook 設計
### コンセプト
* **制御の介入**: ターンの進行、メッセージの内容、ツールの実行に対して介入します。
* **Contextへのアクセス**: メッセージ履歴Contextを読み書きできます。
### Hook Trait
```rust
#[async_trait]
pub trait WorkerHook: Send + Sync {
/// メッセージ送信前。
/// リクエストに含まれるメッセージリストを改変できる。
async fn on_message_send(&self, context: &mut Vec<Message>) -> Result<ControlFlow, Error> {
Ok(ControlFlow::Continue)
}
/// ツール実行前。
/// 実行をキャンセルしたり、引数を書き換えることができる。
async fn before_tool_call(&self, tool_call: &mut ToolCall) -> Result<ControlFlow, Error> {
Ok(ControlFlow::Continue)
}
/// ツール実行後。
/// 結果を書き換えたり、隠蔽したりできる。
async fn after_tool_call(&self, tool_result: &mut ToolResult) -> Result<ControlFlow, Error> {
Ok(ControlFlow::Continue)
}
/// ターン終了時。
/// 生成されたメッセージを検査し、必要ならリトライContinueWithMessagesを指示できる。
async fn on_turn_end(&self, messages: &[Message]) -> Result<TurnResult, Error> {
Ok(TurnResult::Finish)
}
}
pub enum ControlFlow {
Continue,
Skip, // Tool実行などをスキップ
Abort(String), // 処理中断
}
pub enum TurnResult {
Finish,
ContinueWithMessages(Vec<Message>), // メッセージを追加してターン継続(自己修正など)
}
```
## 実装方針
1. **Worker Struct**:
* `Timeline`を所有。
* `Handler`として「ToolCallCollector」をTimelineに登録。
* `stream`終了後に収集したToolCallを処理するロジックを持つ。
2. **Tool Executor Handler**:
* Timeline上ではツール実行を行わず、あくまで「ToolCallブロックの収集」に徹するToolの実行は非同期かつ並列で、ストリーム終了後あるいはブロック確定後に行うため
* ただし、リアルタイム性を重視する場合ストリーミング中にToolを実行開始等は将来的な拡張とするが、現状は「結果が揃うのを待って」という要件に従い、収集フェーズと実行フェーズを分ける。
3. **worker-macros**:
* `syn`, `quote` を用いて、関数定義から `Tool` トレイト実装と `InputSchema` (schemars利用) を生成。
## Worker Event API 設計
### 背景と目的
Workerは内部でイベントを処理し結果を返しますが、UIへのストリーミング表示やリアルタイムフィードバックには、イベントを外部に公開する仕組みが必要です。
**要件**:
1. テキストデルタをリアルタイムでUIに表示
2. ツール呼び出しの進行状況を表示
3. ブロック完了時に累積結果を受け取る
### 設計思想
Worker APIは **Timeline層のHandler機構の薄いラッパー** として設計します。
| 層 | 目的 | 提供するもの |
|---|------|-------------|
| **Handler (Timeline層)** | 内部実装、役割分離 | スコープ管理 + Deltaイベント |
| **Worker Event API** | ユーザー向け利便性 | Handler露出 + Completeイベント追加 |
Handlerのスコープ管理パターンStart→Delta→Endをそのまま活かしつつ、累積済みのCompleteイベントも追加提供します。
### APIパターン
#### 1. 個別登録: `worker.on_*(handler)`
Timelineの`on_*`メソッドを直接露出。必要なイベントだけを個別に登録可能にする。
```rust
// ブロックイベント(スコープ管理あり)
worker.on_text_block(my_text_handler); // Handler<TextBlockKind>
worker.on_tool_use_block(my_tool_handler); // Handler<ToolUseBlockKind>
// 単発イベント(スコープ = ()
worker.on_usage(my_usage_handler); // Handler<UsageKind>
worker.on_status(my_status_handler); // Handler<StatusKind>
// 累積イベントWorker層で追加、スコープ = ()
worker.on_text_complete(my_complete_handler); // Handler<TextCompleteKind>
worker.on_tool_call_complete(my_tool_complete); // Handler<ToolCallCompleteKind>
```
#### 2. 一括登録: `worker.subscribe(subscriber)`
`WorkerSubscriber`トレイトを実装し、全ハンドラをまとめて登録。
```rust
/// 統合Subscriberトレイト
pub trait WorkerSubscriber: Send {
// スコープ型(ブロックイベント用)
type TextBlockScope: Default + Send;
type ToolUseBlockScope: Default + Send;
// === ブロックイベント(スコープ管理あり)===
fn on_text_block(
&mut self,
_scope: &mut Self::TextBlockScope,
_event: &TextBlockEvent,
) {}
fn on_tool_use_block(
&mut self,
_scope: &mut Self::ToolUseBlockScope,
_event: &ToolUseBlockEvent,
) {}
// === 単発イベント ===
fn on_usage(&mut self, _event: &UsageEvent) {}
fn on_status(&mut self, _event: &StatusEvent) {}
fn on_error(&mut self, _event: &ErrorEvent) {}
// === 累積イベントWorker層で追加===
fn on_text_complete(&mut self, _text: &str) {}
fn on_tool_call_complete(&mut self, _call: &ToolCall) {}
// === ターン制御 ===
fn on_turn_start(&mut self, _turn: usize) {}
fn on_turn_end(&mut self, _turn: usize) {}
}
```
### 使用例: WorkerSubscriber
```rust
struct MyUI {
chat_view: ChatView,
}
impl WorkerSubscriber for MyUI {
type TextBlockScope = TextComponent;
type ToolUseBlockScope = ToolComponent;
fn on_text_block(&mut self, comp: &mut TextComponent, event: &TextBlockEvent) {
match event {
TextBlockEvent::Start(_) => {
// スコープ開始時にコンポーネント初期化Defaultで自動生成
}
TextBlockEvent::Delta(text) => {
comp.append(text);
self.chat_view.update(comp);
}
TextBlockEvent::Stop(_) => {
comp.set_immutable();
// スコープ終了後に自動破棄
}
}
}
fn on_text_complete(&mut self, text: &str) {
// 累積済みテキストを履歴に保存
self.chat_view.add_to_history(text);
}
fn on_tool_use_block(&mut self, comp: &mut ToolComponent, event: &ToolUseBlockEvent) {
match event {
ToolUseBlockEvent::Start(start) => {
comp.set_name(&start.name);
self.chat_view.show_tool_indicator(comp);
}
ToolUseBlockEvent::InputJsonDelta(delta) => {
comp.append_input(delta);
}
ToolUseBlockEvent::Stop(_) => {
comp.finalize();
}
}
}
fn on_tool_call_complete(&mut self, call: &ToolCall) {
self.chat_view.update_tool_result(&call.name, &call.input);
}
}
// Worker に登録
let mut worker = Worker::new(client);
worker.subscribe(MyUI::new());
let result = worker.run(messages).await?;
```
### 使用例: 個別登録
```rust
// シンプルなクロージャベース(将来的な糖衣構文として検討)
worker.on_text_complete(|text: &str| {
println!("Complete: {}", text);
});
// または Handler実装
struct TextLogger;
impl Handler<TextCompleteKind> for TextLogger {
type Scope = ();
fn on_event(&mut self, _: &mut (), text: &String) {
println!("Complete: {}", text);
}
}
worker.on_text_complete(TextLogger);
```
### 累積イベント用Kind定義
```rust
/// テキスト完了イベント用Kind
pub struct TextCompleteKind;
impl Kind for TextCompleteKind {
type Event = String; // 累積済みテキスト
}
/// ツール呼び出し完了イベント用Kind
pub struct ToolCallCompleteKind;
impl Kind for ToolCallCompleteKind {
type Event = ToolCall; // 完全なToolCall
}
```
### 内部実装
WorkerはSubscriberを内部で分解し、各Kindに対応するHandlerとしてTimelineに登録します。
累積イベントTextComplete等はWorker層で処理し、ブロック終了時に累積結果を渡します。
```rust
impl<C: LlmClient> Worker<C> {
pub fn subscribe<S: WorkerSubscriber + 'static>(&mut self, subscriber: S) {
let subscriber = Arc::new(Mutex::new(subscriber));
// TextBlock用ハンドラを登録
self.timeline.on_text_block(TextBlockAdapter {
subscriber: subscriber.clone(),
});
// 累積イベント用の内部ハンドラも登録
// (TextBlockCollectorのStop時にon_text_completeを呼ぶ)
}
}
```
### 設計上のポイント
1. **Handlerの再利用**: 既存のHandler traitをそのまま活用
2. **スコープ管理の維持**: ブロックイベントはStart→Delta→Endのライフサイクルを保持
3. **選択的購読**: on_*で必要なイベントだけ、またはSubscriberで一括
4. **累積イベントの追加**: Worker層でComplete系イベントを追加提供
5. **後方互換性**: 従来の`run()`も引き続き使用可能

14
worker-macros/Cargo.toml Normal file
View File

@ -0,0 +1,14 @@
[package]
name = "worker-macros"
version = "0.1.0"
edition = "2024"
publish = false
[lib]
proc-macro = true
[dependencies]
proc-macro2 = "1"
quote = "1"
syn = { version = "2", features = ["full"] }
worker-types = { path = "../worker-types" }

326
worker-macros/src/lib.rs Normal file
View File

@ -0,0 +1,326 @@
//! worker-macros - Tool生成用手続きマクロ
//!
//! `#[tool_registry]` と `#[tool]` マクロを提供し、
//! ユーザー定義のメソッドから `Tool` トレイト実装を自動生成する。
use proc_macro::TokenStream;
use quote::{format_ident, quote};
use syn::{
Attribute, FnArg, ImplItem, ItemImpl, Lit, Meta, Pat, ReturnType, Type, parse_macro_input,
};
/// `impl` ブロックに付与し、内部の `#[tool]` 属性がついたメソッドからツールを生成するマクロ。
///
/// # Example
/// ```ignore
/// #[tool_registry]
/// impl MyApp {
/// /// ユーザー情報を取得する
/// /// 指定されたIDのユーザーをDBから検索します。
/// #[tool]
/// async fn get_user(&self, user_id: String) -> Result<User, Error> { ... }
/// }
/// ```
///
/// これにより以下が生成されます:
/// - `GetUserArgs` 構造体(引数用)
/// - `Tool_get_user` 構造体Toolラッパー
/// - `impl Tool for Tool_get_user`
/// - `impl MyApp { fn get_user_tool(&self) -> Tool_get_user }`
#[proc_macro_attribute]
pub fn tool_registry(_attr: TokenStream, item: TokenStream) -> TokenStream {
let mut impl_block = parse_macro_input!(item as ItemImpl);
let self_ty = &impl_block.self_ty;
let mut generated_items = Vec::new();
for item in &mut impl_block.items {
if let ImplItem::Fn(method) = item {
// #[tool] 属性を探す
let mut is_tool = false;
// 属性を走査してtoolがあるか確認し、削除する
method.attrs.retain(|attr| {
if attr.path().is_ident("tool") {
is_tool = true;
false // 属性を削除
} else {
true
}
});
if is_tool {
let tool_impl = generate_tool_impl(self_ty, method);
generated_items.push(tool_impl);
}
}
}
let expanded = quote! {
#impl_block
#(#generated_items)*
};
TokenStream::from(expanded)
}
/// ドキュメントコメントから説明文を抽出
fn extract_doc_comment(attrs: &[Attribute]) -> String {
let mut lines = Vec::new();
for attr in attrs {
if attr.path().is_ident("doc") {
if let Meta::NameValue(meta) = &attr.meta {
if let syn::Expr::Lit(expr_lit) = &meta.value {
if let Lit::Str(lit_str) = &expr_lit.lit {
let line = lit_str.value();
// 先頭の空白を1つだけ除去/// の後のスペース)
let trimmed = line.strip_prefix(' ').unwrap_or(&line);
lines.push(trimmed.to_string());
}
}
}
}
}
lines.join("\n")
}
/// #[description = "..."] 属性から説明を抽出
fn extract_description_attr(attrs: &[syn::Attribute]) -> Option<String> {
for attr in attrs {
if attr.path().is_ident("description") {
if let Meta::NameValue(meta) = &attr.meta {
if let syn::Expr::Lit(expr_lit) = &meta.value {
if let Lit::Str(lit_str) = &expr_lit.lit {
return Some(lit_str.value());
}
}
}
}
}
None
}
/// メソッドからTool実装を生成
fn generate_tool_impl(self_ty: &Type, method: &syn::ImplItemFn) -> proc_macro2::TokenStream {
let sig = &method.sig;
let method_name = &sig.ident;
let tool_name = method_name.to_string();
// 構造体名を生成PascalCase変換
let pascal_name = to_pascal_case(&method_name.to_string());
let tool_struct_name = format_ident!("Tool{}", pascal_name);
let args_struct_name = format_ident!("{}Args", pascal_name);
let factory_name = format_ident!("{}_tool", method_name);
// ドキュメントコメントから説明を取得
let description = extract_doc_comment(&method.attrs);
let description = if description.is_empty() {
format!("Tool: {}", tool_name)
} else {
description
};
// 引数を解析selfを除く
let args: Vec<_> = sig
.inputs
.iter()
.filter_map(|arg| {
if let FnArg::Typed(pat_type) = arg {
Some(pat_type)
} else {
None // selfを除外
}
})
.collect();
// 引数構造体のフィールドを生成
let arg_fields: Vec<_> = args
.iter()
.map(|pat_type| {
let pat = &pat_type.pat;
let ty = &pat_type.ty;
let desc = extract_description_attr(&pat_type.attrs);
// パターンから識別子を抽出
let field_name = if let Pat::Ident(pat_ident) = pat.as_ref() {
&pat_ident.ident
} else {
panic!("Only simple identifiers are supported for tool arguments");
};
// #[description] があればschemarsのdocに変換
if let Some(desc_str) = desc {
quote! {
#[schemars(description = #desc_str)]
pub #field_name: #ty
}
} else {
quote! {
pub #field_name: #ty
}
}
})
.collect();
// execute内で引数を展開するコード
let arg_names: Vec<_> = args
.iter()
.map(|pat_type| {
if let Pat::Ident(pat_ident) = pat_type.pat.as_ref() {
let ident = &pat_ident.ident;
quote! { args.#ident }
} else {
panic!("Only simple identifiers are supported");
}
})
.collect();
// メソッドが非同期かどうか
let is_async = sig.asyncness.is_some();
// 戻り値の型を解析してResult判定
let awaiter = if is_async {
quote! { .await }
} else {
quote! {}
};
// 戻り値がResultかどうかを判定
let result_handling = if is_result_type(&sig.output) {
quote! {
match result {
Ok(val) => Ok(format!("{:?}", val)),
Err(e) => Err(worker_types::ToolError::ExecutionFailed(format!("{}", e))),
}
}
} else {
quote! {
Ok(format!("{:?}", result))
}
};
// 引数がない場合は空のArgs構造体を作成
let args_struct_def = if arg_fields.is_empty() {
quote! {
#[derive(serde::Deserialize, schemars::JsonSchema)]
struct #args_struct_name {}
}
} else {
quote! {
#[derive(serde::Deserialize, schemars::JsonSchema)]
struct #args_struct_name {
#(#arg_fields),*
}
}
};
// 引数がない場合のexecute処理
let execute_body = if args.is_empty() {
quote! {
// 引数なしでも空のJSONオブジェクトを許容
let _: #args_struct_name = serde_json::from_str(input_json)
.unwrap_or(#args_struct_name {});
let result = self.ctx.#method_name()#awaiter;
#result_handling
}
} else {
quote! {
let args: #args_struct_name = serde_json::from_str(input_json)
.map_err(|e| worker_types::ToolError::InvalidArgument(e.to_string()))?;
let result = self.ctx.#method_name(#(#arg_names),*)#awaiter;
#result_handling
}
};
quote! {
#args_struct_def
#[derive(Clone)]
pub struct #tool_struct_name {
ctx: #self_ty,
}
#[async_trait::async_trait]
impl worker_types::Tool for #tool_struct_name {
fn name(&self) -> &str {
#tool_name
}
fn description(&self) -> &str {
#description
}
fn input_schema(&self) -> serde_json::Value {
let schema = schemars::schema_for!(#args_struct_name);
serde_json::to_value(schema).unwrap_or(serde_json::json!({}))
}
async fn execute(&self, input_json: &str) -> Result<String, worker_types::ToolError> {
#execute_body
}
}
impl #self_ty {
pub fn #factory_name(&self) -> #tool_struct_name {
#tool_struct_name {
ctx: self.clone()
}
}
}
}
}
/// 戻り値の型がResultかどうかを判定
fn is_result_type(return_type: &ReturnType) -> bool {
match return_type {
ReturnType::Default => false,
ReturnType::Type(_, ty) => {
// Type::Pathの場合、最後のセグメントが"Result"かチェック
if let Type::Path(type_path) = ty.as_ref() {
if let Some(segment) = type_path.path.segments.last() {
return segment.ident == "Result";
}
}
false
}
}
}
/// snake_case を PascalCase に変換
fn to_pascal_case(s: &str) -> String {
s.split('_')
.map(|part| {
let mut chars = part.chars();
match chars.next() {
None => String::new(),
Some(first) => first.to_uppercase().chain(chars).collect(),
}
})
.collect()
}
/// マーカー属性。`tool_registry` によって処理されるため、ここでは何もしない。
#[proc_macro_attribute]
pub fn tool(_attr: TokenStream, item: TokenStream) -> TokenStream {
item
}
/// 引数属性用のマーカー。パース時に`tool_registry`で解釈される。
///
/// # Example
/// ```ignore
/// #[tool]
/// async fn get_user(
/// &self,
/// #[description = "取得したいユーザーのID"] user_id: String
/// ) -> Result<User, Error> { ... }
/// ```
#[proc_macro_attribute]
pub fn description(_attr: TokenStream, item: TokenStream) -> TokenStream {
item
}

12
worker-types/Cargo.toml Normal file
View File

@ -0,0 +1,12 @@
[package]
name = "worker-types"
version = "0.1.0"
edition = "2024"
publish = false
[dependencies]
async-trait = "0.1.89"
schemars = "1.2.0"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
thiserror = "2.0.17"

294
worker-types/src/event.rs Normal file
View File

@ -0,0 +1,294 @@
//! イベント型
//!
//! LLMからのストリーミングレスポンスを表現するイベント型。
//! Timeline層がこのイベントを受信し、ハンドラにディスパッチします。
use serde::{Deserialize, Serialize};
// =============================================================================
// Core Event Types (from llm_client layer)
// =============================================================================
/// LLMからのストリーミングイベント
///
/// 各LLMプロバイダからのレスポンスは、この`Event`のストリームとして
/// 統一的に処理されます。
///
/// # イベントの種類
///
/// - **メタイベント**: `Ping`, `Usage`, `Status`, `Error`
/// - **ブロックイベント**: `BlockStart`, `BlockDelta`, `BlockStop`, `BlockAbort`
///
/// # ブロックのライフサイクル
///
/// テキストやツール呼び出しは、`BlockStart` → `BlockDelta`(複数) → `BlockStop`
/// の順序でイベントが発生します。
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub enum Event {
/// ハートビート
Ping(PingEvent),
/// トークン使用量
Usage(UsageEvent),
/// ストリームのステータス変化
Status(StatusEvent),
/// エラー発生
Error(ErrorEvent),
/// ブロック開始(テキスト、ツール使用等)
BlockStart(BlockStart),
/// ブロックの差分データ
BlockDelta(BlockDelta),
/// ブロック正常終了
BlockStop(BlockStop),
/// ブロック中断
BlockAbort(BlockAbort),
}
// =============================================================================
// Meta Events
// =============================================================================
/// Pingイベントハートビート
#[derive(Debug, Clone, PartialEq, Default, Serialize, Deserialize)]
pub struct PingEvent {
pub timestamp: Option<u64>,
}
/// 使用量イベント
#[derive(Debug, Clone, PartialEq, Default, Serialize, Deserialize)]
pub struct UsageEvent {
/// 入力トークン数
pub input_tokens: Option<u64>,
/// 出力トークン数
pub output_tokens: Option<u64>,
/// 合計トークン数
pub total_tokens: Option<u64>,
/// キャッシュ読み込みトークン数
pub cache_read_input_tokens: Option<u64>,
/// キャッシュ作成トークン数
pub cache_creation_input_tokens: Option<u64>,
}
/// ステータスイベント
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct StatusEvent {
pub status: ResponseStatus,
}
/// レスポンスステータス
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub enum ResponseStatus {
/// ストリーム開始
Started,
/// 正常完了
Completed,
/// キャンセルされた
Cancelled,
/// エラー発生
Failed,
}
/// エラーイベント
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ErrorEvent {
pub code: Option<String>,
pub message: String,
}
// =============================================================================
// Block Types
// =============================================================================
/// ブロックの種別
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum BlockType {
/// テキスト生成
Text,
/// 思考 (Claude Extended Thinking等)
Thinking,
/// ツール呼び出し
ToolUse,
/// ツール結果
ToolResult,
}
/// ブロック開始イベント
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct BlockStart {
/// ブロックのインデックス
pub index: usize,
/// ブロックの種別
pub block_type: BlockType,
/// ブロック固有のメタデータ
pub metadata: BlockMetadata,
}
impl BlockStart {
pub fn block_type(&self) -> BlockType {
self.block_type
}
}
/// ブロックのメタデータ
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub enum BlockMetadata {
Text,
Thinking,
ToolUse { id: String, name: String },
ToolResult { tool_use_id: String },
}
/// ブロックデルタイベント
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct BlockDelta {
/// ブロックのインデックス
pub index: usize,
/// デルタの内容
pub delta: DeltaContent,
}
/// デルタの内容
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub enum DeltaContent {
/// テキストデルタ
Text(String),
/// 思考デルタ
Thinking(String),
/// ツール引数のJSON部分文字列
InputJson(String),
}
impl DeltaContent {
/// デルタのブロック種別を取得
pub fn block_type(&self) -> BlockType {
match self {
DeltaContent::Text(_) => BlockType::Text,
DeltaContent::Thinking(_) => BlockType::Thinking,
DeltaContent::InputJson(_) => BlockType::ToolUse,
}
}
}
/// ブロック停止イベント
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct BlockStop {
/// ブロックのインデックス
pub index: usize,
/// ブロックの種別
pub block_type: BlockType,
/// 停止理由
pub stop_reason: Option<StopReason>,
}
impl BlockStop {
pub fn block_type(&self) -> BlockType {
self.block_type
}
}
/// ブロック中断イベント
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct BlockAbort {
/// ブロックのインデックス
pub index: usize,
/// ブロックの種別
pub block_type: BlockType,
/// 中断理由
pub reason: String,
}
impl BlockAbort {
pub fn block_type(&self) -> BlockType {
self.block_type
}
}
/// 停止理由
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub enum StopReason {
/// 自然終了
EndTurn,
/// 最大トークン数到達
MaxTokens,
/// ストップシーケンス到達
StopSequence,
/// ツール使用
ToolUse,
}
// =============================================================================
// Builder / Factory helpers
// =============================================================================
impl Event {
/// テキストブロック開始イベントを作成
pub fn text_block_start(index: usize) -> Self {
Event::BlockStart(BlockStart {
index,
block_type: BlockType::Text,
metadata: BlockMetadata::Text,
})
}
/// テキストデルタイベントを作成
pub fn text_delta(index: usize, text: impl Into<String>) -> Self {
Event::BlockDelta(BlockDelta {
index,
delta: DeltaContent::Text(text.into()),
})
}
/// テキストブロック停止イベントを作成
pub fn text_block_stop(index: usize, stop_reason: Option<StopReason>) -> Self {
Event::BlockStop(BlockStop {
index,
block_type: BlockType::Text,
stop_reason,
})
}
/// ツール使用ブロック開始イベントを作成
pub fn tool_use_start(index: usize, id: impl Into<String>, name: impl Into<String>) -> Self {
Event::BlockStart(BlockStart {
index,
block_type: BlockType::ToolUse,
metadata: BlockMetadata::ToolUse {
id: id.into(),
name: name.into(),
},
})
}
/// ツール引数デルタイベントを作成
pub fn tool_input_delta(index: usize, json: impl Into<String>) -> Self {
Event::BlockDelta(BlockDelta {
index,
delta: DeltaContent::InputJson(json.into()),
})
}
/// ツール使用ブロック停止イベントを作成
pub fn tool_use_stop(index: usize) -> Self {
Event::BlockStop(BlockStop {
index,
block_type: BlockType::ToolUse,
stop_reason: Some(StopReason::ToolUse),
})
}
/// 使用量イベントを作成
pub fn usage(input_tokens: u64, output_tokens: u64) -> Self {
Event::Usage(UsageEvent {
input_tokens: Some(input_tokens),
output_tokens: Some(output_tokens),
total_tokens: Some(input_tokens + output_tokens),
cache_read_input_tokens: None,
cache_creation_input_tokens: None,
})
}
/// Pingイベントを作成
pub fn ping() -> Self {
Event::Ping(PingEvent { timestamp: None })
}
}

174
worker-types/src/handler.rs Normal file
View File

@ -0,0 +1,174 @@
//! Handler/Kind型
//!
//! Timeline層でイベントを処理するためのトレイト。
//! カスタムハンドラを実装してTimelineに登録することで、
//! ストリームイベントを受信できます。
use crate::event::*;
// =============================================================================
// Kind Trait
// =============================================================================
/// イベント種別を定義するマーカートレイト
///
/// 各Kindは対応するイベント型を指定します。
/// HandlerはこのKindに対して実装され、同じKindに対して
/// 異なるScope型を持つ複数のHandlerを登録できます。
pub trait Kind {
/// このKindに対応するイベント型
type Event;
}
// =============================================================================
// Handler Trait
// =============================================================================
/// イベントを処理するハンドラトレイト
///
/// 特定の`Kind`に対するイベント処理を定義します。
/// `Scope`はブロックのライフサイクル中に保持される状態です。
///
/// # Examples
///
/// ```ignore
/// use worker::{Handler, TextBlockKind, TextBlockEvent};
///
/// struct TextCollector {
/// texts: Vec<String>,
/// }
///
/// impl Handler<TextBlockKind> for TextCollector {
/// type Scope = String; // ブロックごとのバッファ
///
/// fn on_event(&mut self, buffer: &mut String, event: &TextBlockEvent) {
/// match event {
/// TextBlockEvent::Delta(text) => buffer.push_str(text),
/// TextBlockEvent::Stop(_) => {
/// self.texts.push(std::mem::take(buffer));
/// }
/// _ => {}
/// }
/// }
/// }
/// ```
pub trait Handler<K: Kind> {
/// Handler固有のスコープ型
///
/// ブロック開始時に`Default::default()`で生成され、
/// ブロック終了時に破棄されます。
type Scope: Default;
/// イベントを処理する
fn on_event(&mut self, scope: &mut Self::Scope, event: &K::Event);
}
// =============================================================================
// Meta Kind Definitions
// =============================================================================
/// Usage Kind - 使用量イベント用
pub struct UsageKind;
impl Kind for UsageKind {
type Event = UsageEvent;
}
/// Ping Kind - Pingイベント用
pub struct PingKind;
impl Kind for PingKind {
type Event = PingEvent;
}
/// Status Kind - ステータスイベント用
pub struct StatusKind;
impl Kind for StatusKind {
type Event = StatusEvent;
}
/// Error Kind - エラーイベント用
pub struct ErrorKind;
impl Kind for ErrorKind {
type Event = ErrorEvent;
}
// =============================================================================
// Block Kind Definitions
// =============================================================================
/// TextBlock Kind - テキストブロック用
pub struct TextBlockKind;
impl Kind for TextBlockKind {
type Event = TextBlockEvent;
}
/// テキストブロックのイベント
#[derive(Debug, Clone, PartialEq)]
pub enum TextBlockEvent {
Start(TextBlockStart),
Delta(String),
Stop(TextBlockStop),
}
#[derive(Debug, Clone, PartialEq)]
pub struct TextBlockStart {
pub index: usize,
}
#[derive(Debug, Clone, PartialEq)]
pub struct TextBlockStop {
pub index: usize,
pub stop_reason: Option<StopReason>,
}
/// ThinkingBlock Kind - 思考ブロック用
pub struct ThinkingBlockKind;
impl Kind for ThinkingBlockKind {
type Event = ThinkingBlockEvent;
}
/// 思考ブロックのイベント
#[derive(Debug, Clone, PartialEq)]
pub enum ThinkingBlockEvent {
Start(ThinkingBlockStart),
Delta(String),
Stop(ThinkingBlockStop),
}
#[derive(Debug, Clone, PartialEq)]
pub struct ThinkingBlockStart {
pub index: usize,
}
#[derive(Debug, Clone, PartialEq)]
pub struct ThinkingBlockStop {
pub index: usize,
}
/// ToolUseBlock Kind - ツール使用ブロック用
pub struct ToolUseBlockKind;
impl Kind for ToolUseBlockKind {
type Event = ToolUseBlockEvent;
}
/// ツール使用ブロックのイベント
#[derive(Debug, Clone, PartialEq)]
pub enum ToolUseBlockEvent {
Start(ToolUseBlockStart),
/// ツール引数のJSON部分文字列
InputJsonDelta(String),
Stop(ToolUseBlockStop),
}
#[derive(Debug, Clone, PartialEq)]
pub struct ToolUseBlockStart {
pub index: usize,
pub id: String,
pub name: String,
}
#[derive(Debug, Clone, PartialEq)]
pub struct ToolUseBlockStop {
pub index: usize,
pub id: String,
pub name: String,
}

181
worker-types/src/hook.rs Normal file
View File

@ -0,0 +1,181 @@
//! Hook関連の型定義
//!
//! Worker層でのターン制御・介入に使用される型
use async_trait::async_trait;
use serde::{Deserialize, Serialize};
use serde_json::Value;
use thiserror::Error;
// =============================================================================
// Control Flow Types
// =============================================================================
/// Hook処理の制御フロー
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ControlFlow {
/// 処理を続行
Continue,
/// 現在の処理をスキップTool実行など
Skip,
/// 処理を中断
Abort(String),
}
/// ターン終了時の判定結果
#[derive(Debug, Clone)]
pub enum TurnResult {
/// ターンを終了
Finish,
/// メッセージを追加してターン継続(自己修正など)
ContinueWithMessages(Vec<crate::Message>),
}
// =============================================================================
// Tool Call / Result Types
// =============================================================================
/// ツール呼び出し情報
///
/// LLMからのToolUseブロックを表現し、Hook処理で改変可能
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ToolCall {
/// ツール呼び出しIDレスポンスとの紐付けに使用
pub id: String,
/// ツール名
pub name: String,
/// 入力引数JSON
pub input: Value,
}
/// ツール実行結果
///
/// ツール実行後の結果を表現し、Hook処理で改変可能
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ToolResult {
/// 対応するツール呼び出しID
pub tool_use_id: String,
/// 結果コンテンツ
pub content: String,
/// エラーかどうか
#[serde(default)]
pub is_error: bool,
}
impl ToolResult {
/// 成功結果を作成
pub fn success(tool_use_id: impl Into<String>, content: impl Into<String>) -> Self {
Self {
tool_use_id: tool_use_id.into(),
content: content.into(),
is_error: false,
}
}
/// エラー結果を作成
pub fn error(tool_use_id: impl Into<String>, content: impl Into<String>) -> Self {
Self {
tool_use_id: tool_use_id.into(),
content: content.into(),
is_error: true,
}
}
}
// =============================================================================
// Hook Error
// =============================================================================
/// Hookエラー
#[derive(Debug, Error)]
pub enum HookError {
/// 処理が中断された
#[error("Aborted: {0}")]
Aborted(String),
/// 内部エラー
#[error("Hook error: {0}")]
Internal(String),
}
// =============================================================================
// WorkerHook Trait
// =============================================================================
/// ターンの進行・ツール実行に介入するためのトレイト
///
/// Hookを使うと、メッセージ送信前、ツール実行前後、ターン終了時に
/// 処理を挟んだり、実行をキャンセルしたりできます。
///
/// # Examples
///
/// ```ignore
/// use worker::{WorkerHook, ControlFlow, HookError, ToolCall, TurnResult, Message};
///
/// struct ValidationHook;
///
/// #[async_trait::async_trait]
/// impl WorkerHook for ValidationHook {
/// async fn before_tool_call(&self, call: &mut ToolCall) -> Result<ControlFlow, HookError> {
/// // 危険なツールをブロック
/// if call.name == "delete_all" {
/// return Ok(ControlFlow::Skip);
/// }
/// Ok(ControlFlow::Continue)
/// }
///
/// async fn on_turn_end(&self, messages: &[Message]) -> Result<TurnResult, HookError> {
/// // 条件を満たさなければ追加メッセージで継続
/// if messages.len() < 3 {
/// return Ok(TurnResult::ContinueWithMessages(vec![
/// Message::user("Please elaborate.")
/// ]));
/// }
/// Ok(TurnResult::Finish)
/// }
/// }
/// ```
///
/// # デフォルト実装
///
/// すべてのメソッドにはデフォルト実装があり、何も行わず`Continue`を返します。
/// 必要なメソッドのみオーバーライドしてください。
#[async_trait]
pub trait WorkerHook: Send + Sync {
/// メッセージ送信前に呼ばれる
///
/// リクエストに含まれるメッセージリストを参照・改変できます。
/// `ControlFlow::Abort`を返すとターンが中断されます。
async fn on_message_send(
&self,
_context: &mut Vec<crate::Message>,
) -> Result<ControlFlow, HookError> {
Ok(ControlFlow::Continue)
}
/// ツール実行前に呼ばれる
///
/// ツール呼び出しの引数を書き換えたり、実行をスキップしたりできます。
/// `ControlFlow::Skip`を返すとこのツールの実行がスキップされます。
async fn before_tool_call(&self, _tool_call: &mut ToolCall) -> Result<ControlFlow, HookError> {
Ok(ControlFlow::Continue)
}
/// ツール実行後に呼ばれる
///
/// ツールの実行結果を書き換えたり、隠蔽したりできます。
async fn after_tool_call(
&self,
_tool_result: &mut ToolResult,
) -> Result<ControlFlow, HookError> {
Ok(ControlFlow::Continue)
}
/// ターン終了時に呼ばれる
///
/// 生成されたメッセージを検査し、必要なら追加メッセージで継続を指示できます。
/// `TurnResult::ContinueWithMessages`を返すと、指定したメッセージを追加して
/// 次のターンに進みます。
async fn on_turn_end(&self, _messages: &[crate::Message]) -> Result<TurnResult, HookError> {
Ok(TurnResult::Finish)
}
}

24
worker-types/src/lib.rs Normal file
View File

@ -0,0 +1,24 @@
//! worker-types - LLMワーカーの型定義
//!
//! このクレートは`worker`クレートで使用される型を提供します。
//! 通常は直接使用せず、`worker`クレート経由で利用してください。
//!
//! ```ignore
//! use worker::{Event, Message, Tool, WorkerHook};
//! ```
mod event;
mod handler;
mod hook;
mod message;
mod state;
mod subscriber;
mod tool;
pub use event::*;
pub use handler::*;
pub use hook::*;
pub use message::*;
pub use state::*;
pub use subscriber::*;
pub use tool::*;

116
worker-types/src/message.rs Normal file
View File

@ -0,0 +1,116 @@
//! メッセージ型
//!
//! LLMとの会話で使用されるメッセージ構造。
//! [`Message::user`]や[`Message::assistant`]で簡単に作成できます。
use serde::{Deserialize, Serialize};
/// メッセージのロール
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
#[serde(rename_all = "lowercase")]
pub enum Role {
/// ユーザー
User,
/// アシスタント
Assistant,
}
/// 会話のメッセージ
///
/// # Examples
///
/// ```ignore
/// use worker::Message;
///
/// // ユーザーメッセージ
/// let user_msg = Message::user("Hello!");
///
/// // アシスタントメッセージ
/// let assistant_msg = Message::assistant("Hi there!");
/// ```
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Message {
/// ロール
pub role: Role,
/// コンテンツ
pub content: MessageContent,
}
/// メッセージコンテンツ
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(untagged)]
pub enum MessageContent {
/// テキストコンテンツ
Text(String),
/// ツール結果
ToolResult {
tool_use_id: String,
content: String,
},
/// 複合コンテンツ (テキスト + ツール使用等)
Parts(Vec<ContentPart>),
}
/// コンテンツパーツ
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "type")]
pub enum ContentPart {
/// テキスト
#[serde(rename = "text")]
Text { text: String },
/// ツール使用
#[serde(rename = "tool_use")]
ToolUse {
id: String,
name: String,
input: serde_json::Value,
},
/// ツール結果
#[serde(rename = "tool_result")]
ToolResult {
tool_use_id: String,
content: String,
},
}
impl Message {
/// ユーザーメッセージを作成
///
/// # Examples
///
/// ```ignore
/// use worker::Message;
/// let msg = Message::user("こんにちは");
/// ```
pub fn user(content: impl Into<String>) -> Self {
Self {
role: Role::User,
content: MessageContent::Text(content.into()),
}
}
/// アシスタントメッセージを作成
///
/// 通常はWorker内部で自動生成されますが、
/// 履歴の初期化などで手動作成も可能です。
pub fn assistant(content: impl Into<String>) -> Self {
Self {
role: Role::Assistant,
content: MessageContent::Text(content.into()),
}
}
/// ツール結果メッセージを作成
///
/// Worker内部でツール実行後に自動生成されます。
/// 通常は直接作成する必要はありません。
pub fn tool_result(tool_use_id: impl Into<String>, content: impl Into<String>) -> Self {
Self {
role: Role::User,
content: MessageContent::ToolResult {
tool_use_id: tool_use_id.into(),
content: content.into(),
},
}
}
}

60
worker-types/src/state.rs Normal file
View File

@ -0,0 +1,60 @@
//! Worker状態
//!
//! Type-stateパターンによるキャッシュ保護のための状態マーカー型。
//! Workerは`Mutable` → `Locked`の状態遷移を持ちます。
/// Worker状態を表すマーカートレイト
///
/// このトレイトはシールされており、外部から実装することはできません。
pub trait WorkerState: private::Sealed + Send + Sync + 'static {}
mod private {
pub trait Sealed {}
}
/// 編集可能状態
///
/// この状態では以下の操作が可能です:
/// - システムプロンプトの設定・変更
/// - メッセージ履歴の編集(追加、削除、クリア)
/// - ツール・Hookの登録
///
/// `Worker::lock()`により[`Locked`]状態へ遷移できます。
///
/// # Examples
///
/// ```ignore
/// use worker::Worker;
///
/// let mut worker = Worker::new(client)
/// .system_prompt("You are helpful.");
///
/// // 履歴を編集可能
/// worker.push_message(Message::user("Hello"));
/// worker.clear_history();
///
/// // ロックして保護状態へ
/// let locked = worker.lock();
/// ```
#[derive(Debug, Clone, Copy, Default)]
pub struct Mutable;
impl private::Sealed for Mutable {}
impl WorkerState for Mutable {}
/// ロック状態(キャッシュ保護)
///
/// この状態では以下の制限があります:
/// - システムプロンプトの変更不可
/// - 既存メッセージ履歴の変更不可(末尾への追記のみ)
///
/// LLM APIのKVキャッシュヒットを保証するため、
/// 実行時にはこの状態の使用が推奨されます。
///
/// `Worker::unlock()`により[`Mutable`]状態へ戻せますが、
/// キャッシュ保護が解除されることに注意してください。
#[derive(Debug, Clone, Copy, Default)]
pub struct Locked;
impl private::Sealed for Locked {}
impl WorkerState for Locked {}

View File

@ -0,0 +1,131 @@
//! イベント購読
//!
//! LLMからのストリーミングイベントをリアルタイムで受信するためのトレイト。
//! UIへのストリーム表示やプログレス表示に使用します。
use crate::{ErrorEvent, StatusEvent, TextBlockEvent, ToolCall, ToolUseBlockEvent, UsageEvent};
// =============================================================================
// WorkerSubscriber Trait
// =============================================================================
/// LLMからのストリーミングイベントを購読するトレイト
///
/// Workerに登録すると、テキスト生成やツール呼び出しのイベントを
/// リアルタイムで受信できます。UIへのストリーム表示に最適です。
///
/// # 受信できるイベント
///
/// - **ブロックイベント**: テキスト、ツール使用(スコープ付き)
/// - **メタイベント**: 使用量、ステータス、エラー
/// - **完了イベント**: テキスト完了、ツール呼び出し完了
/// - **ターン制御**: ターン開始、ターン終了
///
/// # Examples
///
/// ```ignore
/// use worker::{WorkerSubscriber, TextBlockEvent};
///
/// struct StreamPrinter;
///
/// impl WorkerSubscriber for StreamPrinter {
/// type TextBlockScope = ();
/// type ToolUseBlockScope = ();
///
/// fn on_text_block(&mut self, _: &mut (), event: &TextBlockEvent) {
/// if let TextBlockEvent::Delta(text) = event {
/// print!("{}", text); // リアルタイム出力
/// }
/// }
///
/// fn on_text_complete(&mut self, text: &str) {
/// println!("\n--- Complete: {} chars ---", text.len());
/// }
/// }
///
/// // Workerに登録
/// worker.subscribe(StreamPrinter);
/// ```
pub trait WorkerSubscriber: Send {
// =========================================================================
// スコープ型(ブロックイベント用)
// =========================================================================
/// テキストブロック処理用のスコープ型
///
/// ブロック開始時にDefault::default()で生成され、
/// ブロック終了時に破棄される。
type TextBlockScope: Default + Send;
/// ツール使用ブロック処理用のスコープ型
type ToolUseBlockScope: Default + Send;
// =========================================================================
// ブロックイベント(スコープ管理あり)
// =========================================================================
/// テキストブロックイベント
///
/// Start/Delta/Stopのライフサイクルを持つ。
/// scopeはブロック開始時に生成され、終了時に破棄される。
#[allow(unused_variables)]
fn on_text_block(&mut self, scope: &mut Self::TextBlockScope, event: &TextBlockEvent) {}
/// ツール使用ブロックイベント
///
/// Start/InputJsonDelta/Stopのライフサイクルを持つ。
#[allow(unused_variables)]
fn on_tool_use_block(
&mut self,
scope: &mut Self::ToolUseBlockScope,
event: &ToolUseBlockEvent,
) {
}
// =========================================================================
// 単発イベント(スコープ不要)
// =========================================================================
/// 使用量イベント
#[allow(unused_variables)]
fn on_usage(&mut self, event: &UsageEvent) {}
/// ステータスイベント
#[allow(unused_variables)]
fn on_status(&mut self, event: &StatusEvent) {}
/// エラーイベント
#[allow(unused_variables)]
fn on_error(&mut self, event: &ErrorEvent) {}
// =========================================================================
// 累積イベントWorker層で追加
// =========================================================================
/// テキスト完了イベント
///
/// テキストブロックが完了した時点で、累積されたテキスト全体が渡される。
/// ブロック処理後の最終結果を受け取るのに便利。
#[allow(unused_variables)]
fn on_text_complete(&mut self, text: &str) {}
/// ツール呼び出し完了イベント
///
/// ツール使用ブロックが完了した時点で、完全なToolCallが渡される。
#[allow(unused_variables)]
fn on_tool_call_complete(&mut self, call: &ToolCall) {}
// =========================================================================
// ターン制御
// =========================================================================
/// ターン開始時
///
/// `turn`は0から始まるターン番号。
#[allow(unused_variables)]
fn on_turn_start(&mut self, turn: usize) {}
/// ターン終了時
#[allow(unused_variables)]
fn on_turn_end(&mut self, turn: usize) {}
}

90
worker-types/src/tool.rs Normal file
View File

@ -0,0 +1,90 @@
//! ツール定義
//!
//! LLMから呼び出し可能なツールを定義するためのトレイト。
//! 通常は`#[tool]`マクロを使用して自動実装します。
use async_trait::async_trait;
use serde_json::Value;
use thiserror::Error;
/// ツール実行時のエラー
#[derive(Debug, Error)]
pub enum ToolError {
/// 引数が不正
#[error("Invalid argument: {0}")]
InvalidArgument(String),
/// 実行に失敗
#[error("Execution failed: {0}")]
ExecutionFailed(String),
/// 内部エラー
#[error("Internal error: {0}")]
Internal(String),
}
/// LLMから呼び出し可能なツールを定義するトレイト
///
/// ツールはLLMが外部リソースにアクセスしたり、
/// 計算を実行したりするために使用します。
///
/// # 実装方法
///
/// 通常は`#[tool]`マクロを使用して自動実装します:
///
/// ```ignore
/// use worker::tool;
///
/// #[tool(description = "Search the web for information")]
/// async fn search(query: String) -> String {
/// // 検索処理
/// format!("Results for: {}", query)
/// }
/// ```
///
/// # 手動実装
///
/// ```ignore
/// use worker::{Tool, ToolError};
/// use serde_json::{json, Value};
///
/// struct MyTool;
///
/// #[async_trait::async_trait]
/// impl Tool for MyTool {
/// fn name(&self) -> &str { "my_tool" }
/// fn description(&self) -> &str { "My custom tool" }
/// fn input_schema(&self) -> Value {
/// json!({
/// "type": "object",
/// "properties": {
/// "query": { "type": "string" }
/// },
/// "required": ["query"]
/// })
/// }
/// async fn execute(&self, input: &str) -> Result<String, ToolError> {
/// Ok("result".to_string())
/// }
/// }
/// ```
#[async_trait]
pub trait Tool: Send + Sync {
/// ツール名LLMが識別に使用
fn name(&self) -> &str;
/// ツールの説明LLMへのプロンプトに含まれる
fn description(&self) -> &str;
/// 引数のJSON Schema
///
/// LLMはこのスキーマに従って引数を生成します。
fn input_schema(&self) -> Value;
/// ツールを実行する
///
/// # Arguments
/// * `input_json` - LLMが生成したJSON形式の引数
///
/// # Returns
/// 実行結果の文字列。この内容がLLMに返されます。
async fn execute(&self, input_json: &str) -> Result<String, ToolError>;
}

24
worker/Cargo.toml Normal file
View File

@ -0,0 +1,24 @@
[package]
name = "worker"
version = "0.1.0"
edition = "2024"
[dependencies]
async-trait = "0.1.89"
eventsource-stream = "0.2.3"
futures = "0.3.31"
reqwest = { version = "0.13.1", features = ["stream", "json"] }
serde = { version = "1.0.228", features = ["derive"] }
serde_json = "1.0"
thiserror = "1.0"
tokio = { version = "1.49.0", features = ["macros", "rt-multi-thread"] }
tracing = "0.1"
worker-macros = { path = "../worker-macros" }
worker-types = { path = "../worker-types" }
[dev-dependencies]
clap = { version = "4.5.54", features = ["derive", "env"] }
schemars = "1.2.0"
tempfile = "3.24.0"
dotenv = "0.15.0"
tracing-subscriber = { version = "0.3", features = ["env-filter"] }

View File

@ -0,0 +1,219 @@
//! テストフィクスチャ記録ツール
//!
//! 定義されたシナリオのAPIレスポンスを記録する。
//!
//! ## 使用方法
//!
//! ```bash
//! # 利用可能なシナリオを表示
//! cargo run --example record_test_fixtures
//!
//! # 特定のシナリオを記録
//! ANTHROPIC_API_KEY=your-key cargo run --example record_test_fixtures -- simple_text
//! ANTHROPIC_API_KEY=your-key cargo run --example record_test_fixtures -- tool_call
//!
//! # 全シナリオを記録
//! ANTHROPIC_API_KEY=your-key cargo run --example record_test_fixtures -- --all
//! ```
mod recorder;
mod scenarios;
use clap::{Parser, ValueEnum};
use worker::llm_client::providers::anthropic::AnthropicClient;
use worker::llm_client::providers::gemini::GeminiClient;
use worker::llm_client::providers::openai::OpenAIClient;
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Scenario name
#[arg(short, long)]
scenario: Option<String>,
/// Run all scenarios
#[arg(long, default_value_t = false)]
all: bool,
/// Client to use
#[arg(short, long, value_enum, default_value_t = ClientType::Anthropic)]
client: ClientType,
/// Model to use (optional, defaults per client)
#[arg(short, long)]
model: Option<String>,
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum, Debug)]
enum ClientType {
Anthropic,
Gemini,
Openai,
Ollama,
}
async fn run_scenario_with_anthropic(
scenario: &scenarios::TestScenario,
subdir: &str,
model: Option<String>,
) -> Result<(), Box<dyn std::error::Error>> {
let api_key = std::env::var("ANTHROPIC_API_KEY")
.expect("ANTHROPIC_API_KEY environment variable must be set");
let model = model.as_deref().unwrap_or("claude-sonnet-4-20250514");
let client = AnthropicClient::new(&api_key, model);
recorder::record_request(
&client,
scenario.request.clone(),
scenario.name,
scenario.output_name,
subdir,
model,
)
.await?;
Ok(())
}
async fn run_scenario_with_openai(
scenario: &scenarios::TestScenario,
subdir: &str,
model: Option<String>,
) -> Result<(), Box<dyn std::error::Error>> {
let api_key =
std::env::var("OPENAI_API_KEY").expect("OPENAI_API_KEY environment variable must be set");
let model = model.as_deref().unwrap_or("gpt-4o");
let client = OpenAIClient::new(&api_key, model);
recorder::record_request(
&client,
scenario.request.clone(),
scenario.name,
scenario.output_name,
subdir,
model,
)
.await?;
Ok(())
}
async fn run_scenario_with_ollama(
scenario: &scenarios::TestScenario,
subdir: &str,
model: Option<String>,
) -> Result<(), Box<dyn std::error::Error>> {
use worker::llm_client::providers::ollama::OllamaClient;
// Ollama typically runs local, no key needed or placeholder
let model = model.as_deref().unwrap_or("llama3"); // default example
let client = OllamaClient::new(model); // base_url placeholder, handled by client default
recorder::record_request(
&client,
scenario.request.clone(),
scenario.name,
scenario.output_name,
subdir,
model,
)
.await?;
Ok(())
}
async fn run_scenario_with_gemini(
scenario: &scenarios::TestScenario,
subdir: &str,
model: Option<String>,
) -> Result<(), Box<dyn std::error::Error>> {
let api_key =
std::env::var("GEMINI_API_KEY").expect("GEMINI_API_KEY environment variable must be set");
let model = model.as_deref().unwrap_or("gemini-2.0-flash");
let client = GeminiClient::new(&api_key, model);
recorder::record_request(
&client,
scenario.request.clone(),
scenario.name,
scenario.output_name,
subdir,
model,
)
.await?;
Ok(())
}
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
dotenv::dotenv().ok();
let args = Args::parse();
if !args.all && args.scenario.is_none() {
use clap::CommandFactory;
let mut cmd = Args::command();
cmd.error(
clap::error::ErrorKind::MissingRequiredArgument,
"Either --all or --scenario <SCENARIO> must be provided",
)
.exit();
}
let all_scenarios = scenarios::scenarios();
// Determine scenarios to run
let scenarios_to_run: Vec<_> = if args.all {
all_scenarios
} else {
let scenario_name = args.scenario.as_ref().unwrap();
let found: Vec<_> = all_scenarios
.into_iter()
.filter(|s| s.output_name == scenario_name)
.collect();
if found.is_empty() {
eprintln!("Error: Unknown scenario '{}'", scenario_name);
// Verify correct name by listing
println!("Available scenarios:");
for s in scenarios::scenarios() {
println!(" {}", s.output_name);
}
std::process::exit(1);
}
found
};
println!("=== Test Fixture Generator ===");
println!("Client: {:?}", args.client);
if let Some(ref m) = args.model {
println!("Model: {}", m);
}
println!("Scenarios: {}\n", scenarios_to_run.len());
let subdir = match args.client {
ClientType::Anthropic => "anthropic",
ClientType::Gemini => "gemini",
ClientType::Openai => "openai",
ClientType::Ollama => "ollama",
};
// シナリオのフィルタリングは main.rs のロジックで実行済み
// ここでは単純なループで実行
for scenario in scenarios_to_run {
match args.client {
ClientType::Anthropic => {
run_scenario_with_anthropic(&scenario, subdir, args.model.clone()).await?
}
ClientType::Gemini => {
run_scenario_with_gemini(&scenario, subdir, args.model.clone()).await?
}
ClientType::Openai => {
run_scenario_with_openai(&scenario, subdir, args.model.clone()).await?
}
ClientType::Ollama => {
run_scenario_with_ollama(&scenario, subdir, args.model.clone()).await?
}
}
}
println!("\n✅ Done!");
println!("Run tests with: cargo test -p worker");
Ok(())
}

View File

@ -0,0 +1,101 @@
//! テストフィクスチャ記録機構
//!
//! イベントをJSONLフォーマットでファイルに保存する
use std::fs::{self, File};
use std::io::{BufWriter, Write};
use std::path::Path;
use std::time::{Instant, SystemTime, UNIX_EPOCH};
use futures::StreamExt;
use worker::llm_client::{LlmClient, Request};
/// 記録されたイベント
#[derive(Debug, serde::Serialize, serde::Deserialize)]
pub struct RecordedEvent {
pub elapsed_ms: u64,
pub event_type: String,
pub data: String,
}
/// セッションメタデータ
#[derive(Debug, serde::Serialize, serde::Deserialize)]
pub struct SessionMetadata {
pub timestamp: u64,
pub model: String,
pub description: String,
}
/// イベントシーケンスをファイルに保存
pub fn save_fixture(
path: impl AsRef<Path>,
metadata: &SessionMetadata,
events: &[RecordedEvent],
) -> std::io::Result<()> {
let file = File::create(path)?;
let mut writer = BufWriter::new(file);
writeln!(writer, "{}", serde_json::to_string(metadata)?)?;
for event in events {
writeln!(writer, "{}", serde_json::to_string(event)?)?;
}
writer.flush()?;
Ok(())
}
/// リクエストを送信してイベントを記録
pub async fn record_request<C: LlmClient>(
client: &C,
request: Request,
description: &str,
output_name: &str,
subdir: &str, // e.g. "anthropic", "openai"
model: &str,
) -> Result<usize, Box<dyn std::error::Error>> {
println!("\n📝 Recording: {}", description);
let start_time = Instant::now();
let mut events: Vec<RecordedEvent> = Vec::new();
let mut stream = client.stream(request).await?;
while let Some(result) = stream.next().await {
let elapsed = start_time.elapsed().as_millis() as u64;
match result {
Ok(event) => {
let event_json = serde_json::to_string(&event)?;
println!(" [{:>6}ms] {:?}", elapsed, event);
events.push(RecordedEvent {
elapsed_ms: elapsed,
event_type: format!("{:?}", std::mem::discriminant(&event)),
data: event_json,
});
}
Err(e) => {
eprintln!(" Error: {}", e);
break;
}
}
}
// 保存
let fixtures_dir = Path::new("worker/tests/fixtures").join(subdir);
fs::create_dir_all(&fixtures_dir)?;
let filepath = fixtures_dir.join(format!("{}.jsonl", output_name));
let timestamp = SystemTime::now().duration_since(UNIX_EPOCH)?.as_secs();
let metadata = SessionMetadata {
timestamp,
model: model.to_string(),
description: description.to_string(),
};
save_fixture(&filepath, &metadata, &events)?;
let event_count = events.len();
println!(" 💾 Saved: {}", filepath.display());
println!(" 📊 {} events recorded", event_count);
Ok(event_count)
}

View File

@ -0,0 +1,74 @@
//! テストフィクスチャ用リクエスト定義
//!
//! 各シナリオのリクエストと出力ファイル名を定義
use worker::llm_client::{Request, ToolDefinition};
/// テストシナリオ
pub struct TestScenario {
/// シナリオ名(説明)
pub name: &'static str,
/// 出力ファイル名(拡張子なし)
pub output_name: &'static str,
/// リクエスト
pub request: Request,
}
/// 全てのテストシナリオを取得
pub fn scenarios() -> Vec<TestScenario> {
vec![
simple_text_scenario(),
tool_call_scenario(),
long_text_scenario(),
]
}
/// シンプルなテキストレスポンス
fn simple_text_scenario() -> TestScenario {
TestScenario {
name: "Simple text response",
output_name: "simple_text",
request: Request::new()
.system("You are a helpful assistant. Be very concise.")
.user("Say hello in one word.")
.max_tokens(50),
}
}
/// ツール呼び出しを含むレスポンス
fn tool_call_scenario() -> TestScenario {
let get_weather_tool = ToolDefinition::new("get_weather")
.description("Get the current weather for a city")
.input_schema(serde_json::json!({
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city name"
}
},
"required": ["city"]
}));
TestScenario {
name: "Tool call response",
output_name: "tool_call",
request: Request::new()
.system("You are a helpful assistant. Use tools when appropriate.")
.user("What's the weather in Tokyo? Use the get_weather tool.")
.tool(get_weather_tool)
.max_tokens(200),
}
}
/// 長文生成シナリオ
fn long_text_scenario() -> TestScenario {
TestScenario {
name: "Long text response",
output_name: "long_text",
request: Request::new()
.system("You are a creative writer.")
.user("Write a short story about a robot discovering a garden. It should be at least 300 words.")
.max_tokens(1000),
}
}

View File

@ -0,0 +1,497 @@
//! Worker を用いた対話型 CLI クライアント
//!
//! 複数のLLMプロバイダAnthropic, Gemini, OpenAI, Ollamaと対話するCLIアプリケーション。
//! ツールの登録と実行、ストリーミングレスポンスの表示をデモする。
//!
//! ## 使用方法
//!
//! ```bash
//! # .envファイルにAPIキーを設定
//! echo "ANTHROPIC_API_KEY=your-api-key" > .env
//! echo "GEMINI_API_KEY=your-api-key" >> .env
//! echo "OPENAI_API_KEY=your-api-key" >> .env
//!
//! # Anthropic (デフォルト)
//! cargo run --example worker_cli
//!
//! # Gemini
//! cargo run --example worker_cli -- --provider gemini
//!
//! # OpenAI
//! cargo run --example worker_cli -- --provider openai --model gpt-4o
//!
//! # Ollama (ローカル)
//! cargo run --example worker_cli -- --provider ollama --model llama3.2
//!
//! # オプション指定
//! cargo run --example worker_cli -- --provider anthropic --model claude-3-haiku-20240307 --system "You are a helpful assistant."
//!
//! # ヘルプ表示
//! cargo run --example worker_cli -- --help
//! ```
use std::collections::HashMap;
use std::io::{self, Write};
use std::sync::{Arc, Mutex};
use async_trait::async_trait;
use tracing::info;
use tracing_subscriber::EnvFilter;
use clap::{Parser, ValueEnum};
use worker::{
Worker,
hook::{ControlFlow, HookError, ToolResult, WorkerHook},
llm_client::{
LlmClient,
providers::{
anthropic::AnthropicClient, gemini::GeminiClient, ollama::OllamaClient,
openai::OpenAIClient,
},
},
timeline::{Handler, TextBlockEvent, TextBlockKind, ToolUseBlockEvent, ToolUseBlockKind},
};
use worker_macros::tool_registry;
// 必要なマクロ展開用インポート
use schemars;
use serde;
// =============================================================================
// プロバイダ定義
// =============================================================================
/// 利用可能なLLMプロバイダ
#[derive(Debug, Clone, Copy, ValueEnum, Default)]
enum Provider {
/// Anthropic Claude
#[default]
Anthropic,
/// Google Gemini
Gemini,
/// OpenAI GPT
Openai,
/// Ollama (ローカル)
Ollama,
}
impl Provider {
/// プロバイダのデフォルトモデル
fn default_model(&self) -> &'static str {
match self {
Provider::Anthropic => "claude-sonnet-4-20250514",
Provider::Gemini => "gemini-2.0-flash",
Provider::Openai => "gpt-4o",
Provider::Ollama => "llama3.2",
}
}
/// プロバイダの表示名
fn display_name(&self) -> &'static str {
match self {
Provider::Anthropic => "Anthropic Claude",
Provider::Gemini => "Google Gemini",
Provider::Openai => "OpenAI GPT",
Provider::Ollama => "Ollama (Local)",
}
}
/// APIキーの環境変数名
fn env_var_name(&self) -> Option<&'static str> {
match self {
Provider::Anthropic => Some("ANTHROPIC_API_KEY"),
Provider::Gemini => Some("GEMINI_API_KEY"),
Provider::Openai => Some("OPENAI_API_KEY"),
Provider::Ollama => None, // Ollamaはローカルなので不要
}
}
}
// =============================================================================
// CLI引数定義
// =============================================================================
/// 複数のLLMプロバイダに対応した対話型CLIクライアント
#[derive(Parser, Debug)]
#[command(name = "worker-cli")]
#[command(about = "Interactive CLI client for multiple LLM providers using Worker")]
#[command(version)]
struct Args {
/// 使用するプロバイダ
#[arg(long, value_enum, default_value_t = Provider::Anthropic)]
provider: Provider,
/// 使用するモデル名(未指定時はプロバイダのデフォルト)
#[arg(short, long)]
model: Option<String>,
/// システムプロンプト
#[arg(short, long)]
system: Option<String>,
/// ツールを無効化
#[arg(long, default_value = "false")]
no_tools: bool,
/// 最初のメッセージ(指定するとそれを送信して終了)
#[arg(short = 'p', long)]
prompt: Option<String>,
/// APIキー環境変数より優先
#[arg(long)]
api_key: Option<String>,
}
// =============================================================================
// ツール定義
// =============================================================================
/// アプリケーションコンテキスト
#[derive(Clone)]
struct AppContext;
#[tool_registry]
impl AppContext {
/// 現在の日時を取得する
///
/// システムの現在の日付と時刻を返します。
#[tool]
fn get_current_time(&self) -> String {
let now = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap()
.as_secs();
// シンプルなUnixタイムスタンプからの変換
format!("Current Unix timestamp: {}", now)
}
/// 簡単な計算を行う
///
/// 2つの数値の四則演算を実行します。
#[tool]
fn calculate(&self, a: f64, b: f64, operation: String) -> Result<String, String> {
let result = match operation.as_str() {
"add" | "+" => a + b,
"subtract" | "-" => a - b,
"multiply" | "*" => a * b,
"divide" | "/" => {
if b == 0.0 {
return Err("Cannot divide by zero".to_string());
}
a / b
}
_ => return Err(format!("Unknown operation: {}", operation)),
};
Ok(format!("{} {} {} = {}", a, operation, b, result))
}
}
// =============================================================================
// ストリーミング表示用ハンドラー
// =============================================================================
/// テキストをリアルタイムで出力するハンドラー
struct StreamingPrinter {
is_first_delta: Arc<Mutex<bool>>,
}
impl StreamingPrinter {
fn new() -> Self {
Self {
is_first_delta: Arc::new(Mutex::new(true)),
}
}
}
impl Handler<TextBlockKind> for StreamingPrinter {
type Scope = ();
fn on_event(&mut self, _scope: &mut (), event: &TextBlockEvent) {
match event {
TextBlockEvent::Start(_) => {
let mut first = self.is_first_delta.lock().unwrap();
if *first {
print!("\n🤖 ");
*first = false;
}
}
TextBlockEvent::Delta(text) => {
print!("{}", text);
io::stdout().flush().ok();
}
TextBlockEvent::Stop(_) => {
println!();
}
}
}
}
/// ツール呼び出しを表示するハンドラー
struct ToolCallPrinter {
call_names: Arc<Mutex<HashMap<String, String>>>,
}
impl ToolCallPrinter {
fn new(call_names: Arc<Mutex<HashMap<String, String>>>) -> Self {
Self { call_names }
}
}
#[derive(Default)]
struct ToolCallPrinterScope {
input_json: String,
}
impl Handler<ToolUseBlockKind> for ToolCallPrinter {
type Scope = ToolCallPrinterScope;
fn on_event(&mut self, scope: &mut Self::Scope, event: &ToolUseBlockEvent) {
match event {
ToolUseBlockEvent::Start(start) => {
scope.input_json.clear();
self.call_names
.lock()
.unwrap()
.insert(start.id.clone(), start.name.clone());
println!("\n🔧 Calling tool: {}", start.name);
}
ToolUseBlockEvent::InputJsonDelta(json) => {
scope.input_json.push_str(json);
}
ToolUseBlockEvent::Stop(_) => {
if scope.input_json.is_empty() {
println!(" Args: {{}}");
} else {
println!(" Args: {}", scope.input_json);
}
scope.input_json.clear();
}
}
}
}
/// ツール実行結果を表示するHook
struct ToolResultPrinterHook {
call_names: Arc<Mutex<HashMap<String, String>>>,
}
impl ToolResultPrinterHook {
fn new(call_names: Arc<Mutex<HashMap<String, String>>>) -> Self {
Self { call_names }
}
}
#[async_trait]
impl WorkerHook for ToolResultPrinterHook {
async fn after_tool_call(
&self,
tool_result: &mut ToolResult,
) -> Result<ControlFlow, HookError> {
let name = self
.call_names
.lock()
.unwrap()
.remove(&tool_result.tool_use_id)
.unwrap_or_else(|| tool_result.tool_use_id.clone());
if tool_result.is_error {
println!(" Result ({}): ❌ {}", name, tool_result.content);
} else {
println!(" Result ({}): ✅ {}", name, tool_result.content);
}
Ok(ControlFlow::Continue)
}
}
// =============================================================================
// クライアント作成
// =============================================================================
/// プロバイダに応じたAPIキーを取得
fn get_api_key(args: &Args) -> Result<String, String> {
// CLI引数のAPIキーが優先
if let Some(ref key) = args.api_key {
return Ok(key.clone());
}
// プロバイダに応じた環境変数を確認
if let Some(env_var) = args.provider.env_var_name() {
std::env::var(env_var).map_err(|_| {
format!(
"API key required. Set {} environment variable or use --api-key",
env_var
)
})
} else {
// Ollamaなどはキー不要
Ok(String::new())
}
}
/// プロバイダに応じたクライアントを作成
fn create_client(args: &Args) -> Result<Box<dyn LlmClient>, String> {
let model = args
.model
.clone()
.unwrap_or_else(|| args.provider.default_model().to_string());
let api_key = get_api_key(args)?;
match args.provider {
Provider::Anthropic => {
let client = AnthropicClient::new(&api_key, &model);
Ok(Box::new(client))
}
Provider::Gemini => {
let client = GeminiClient::new(&api_key, &model);
Ok(Box::new(client))
}
Provider::Openai => {
let client = OpenAIClient::new(&api_key, &model);
Ok(Box::new(client))
}
Provider::Ollama => {
let client = OllamaClient::new(&model);
Ok(Box::new(client))
}
}
}
// =============================================================================
// メイン
// =============================================================================
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// .envファイルを読み込む
dotenv::dotenv().ok();
// ロギング初期化
// RUST_LOG=debug cargo run --example worker_cli ... で詳細ログ表示
// デフォルトは warn レベル、RUST_LOG 環境変数で上書き可能
let filter = EnvFilter::try_from_default_env().unwrap_or_else(|_| EnvFilter::new("warn"));
tracing_subscriber::fmt()
.with_env_filter(filter)
.with_target(true)
.init();
// CLI引数をパース
let args = Args::parse();
info!(
provider = ?args.provider,
model = ?args.model,
"Starting worker CLI"
);
// 対話モードかワンショットモードか
let is_interactive = args.prompt.is_none();
// モデル名(表示用)
let model_name = args
.model
.clone()
.unwrap_or_else(|| args.provider.default_model().to_string());
if is_interactive {
let title = format!("Worker CLI - {}", args.provider.display_name());
let border_len = title.len() + 6;
println!("{}", "".repeat(border_len));
println!("{}", title);
println!("{}", "".repeat(border_len));
println!();
println!("Provider: {}", args.provider.display_name());
println!("Model: {}", model_name);
if let Some(ref system) = args.system {
println!("System: {}", system);
}
if args.no_tools {
println!("Tools: disabled");
} else {
println!("Tools:");
println!(" • get_current_time - Get the current timestamp");
println!(" • calculate - Perform arithmetic (add, subtract, multiply, divide)");
}
println!();
println!("Type 'quit' or 'exit' to end the session.");
println!("─────────────────────────────────────────────────");
}
// クライアント作成
let client = match create_client(&args) {
Ok(c) => c,
Err(e) => {
eprintln!("❌ Error: {}", e);
std::process::exit(1);
}
};
// Worker作成
let mut worker = Worker::new(client);
let tool_call_names = Arc::new(Mutex::new(HashMap::new()));
// システムプロンプトを設定
if let Some(ref system_prompt) = args.system {
worker.set_system_prompt(system_prompt);
}
// ツール登録(--no-tools でなければ)
if !args.no_tools {
let app = AppContext;
worker.register_tool(app.get_current_time_tool());
worker.register_tool(app.calculate_tool());
}
// ストリーミング表示用ハンドラーを登録
worker
.timeline_mut()
.on_text_block(StreamingPrinter::new())
.on_tool_use_block(ToolCallPrinter::new(tool_call_names.clone()));
worker.add_hook(ToolResultPrinterHook::new(tool_call_names));
// ワンショットモード
if let Some(prompt) = args.prompt {
match worker.run(&prompt).await {
Ok(_) => {}
Err(e) => {
eprintln!("\n❌ Error: {}", e);
std::process::exit(1);
}
}
return Ok(());
}
// 対話ループ
loop {
print!("\n👤 You: ");
io::stdout().flush()?;
let mut input = String::new();
io::stdin().read_line(&mut input)?;
let input = input.trim();
if input.is_empty() {
continue;
}
if input == "quit" || input == "exit" {
println!("\n👋 Goodbye!");
break;
}
// Workerを実行Workerが履歴を管理
match worker.run(input).await {
Ok(_) => {}
Err(e) => {
eprintln!("\n❌ Error: {}", e);
}
}
}
Ok(())
}

93
worker/src/lib.rs Normal file
View File

@ -0,0 +1,93 @@
//! worker - LLMワーカーライブラリ
//!
//! LLMとの対話を管理するコンポーネントを提供します。
//!
//! # 主要なコンポーネント
//!
//! - [`Worker`] - LLMとの対話を管理する中心コンポーネント
//! - [`tool::Tool`] - LLMから呼び出し可能なツール
//! - [`hook::WorkerHook`] - ターン進行への介入
//! - [`subscriber::WorkerSubscriber`] - ストリーミングイベントの購読
//!
//! # Quick Start
//!
//! ```ignore
//! use worker::{Worker, Message};
//!
//! // Workerを作成
//! let mut worker = Worker::new(client)
//! .system_prompt("You are a helpful assistant.");
//!
//! // ツールを登録(オプション)
//! use worker::tool::Tool;
//! worker.register_tool(my_tool);
//!
//! // 対話を実行
//! let history = worker.run("Hello!").await?;
//! ```
//!
//! # キャッシュ保護
//!
//! KVキャッシュのヒット率を最大化するには、[`Worker::lock()`]で
//! ロック状態に遷移してから実行してください。
//!
//! ```ignore
//! let mut locked = worker.lock();
//! locked.run("user input").await?;
//! ```
pub mod llm_client;
pub mod timeline;
mod subscriber_adapter;
mod worker;
// =============================================================================
// トップレベル公開(最も頻繁に使う型)
// =============================================================================
pub use worker::{Worker, WorkerConfig, WorkerError};
pub use worker_types::{ContentPart, Message, MessageContent, Role};
// =============================================================================
// 意味のあるモジュールとして公開
// =============================================================================
/// ツール定義
///
/// LLMから呼び出し可能なツールを定義するためのトレイトと型。
pub mod tool {
pub use worker_types::{Tool, ToolError};
}
/// Hook機能
///
/// ターンの進行・ツール実行に介入するためのトレイトと型。
pub mod hook {
pub use worker_types::{ControlFlow, HookError, ToolCall, ToolResult, TurnResult, WorkerHook};
}
/// イベント購読
///
/// LLMからのストリーミングイベントをリアルタイムで受信するためのトレイト。
pub mod subscriber {
pub use worker_types::WorkerSubscriber;
}
/// イベント型
///
/// LLMからのストリーミングレスポンスを表現するイベント型。
/// Timeline層を直接使用する場合に必要です。
pub mod event {
pub use worker_types::{
BlockAbort, BlockDelta, BlockMetadata, BlockStart, BlockStop, BlockType, DeltaContent,
ErrorEvent, Event, PingEvent, ResponseStatus, StatusEvent, StopReason, UsageEvent,
};
}
/// Worker状態
///
/// Type-stateパターンによるキャッシュ保護のための状態マーカー型。
pub mod state {
pub use worker_types::{Locked, Mutable, WorkerState};
}

View File

@ -0,0 +1,41 @@
//! LLMクライアント共通trait定義
use std::pin::Pin;
use async_trait::async_trait;
use futures::Stream;
use worker_types::Event;
use crate::llm_client::{ClientError, Request};
/// LLMクライアントのtrait
///
/// 各プロバイダはこのtraitを実装し、統一されたインターフェースを提供する。
#[async_trait]
pub trait LlmClient: Send + Sync {
/// ストリーミングリクエストを送信し、Eventストリームを返す
///
/// # Arguments
/// * `request` - リクエスト情報
///
/// # Returns
/// * `Ok(Stream)` - イベントストリーム
/// * `Err(ClientError)` - エラー
async fn stream(
&self,
request: Request,
) -> Result<Pin<Box<dyn Stream<Item = Result<Event, ClientError>> + Send>>, ClientError>;
}
/// `Box<dyn LlmClient>` に対する `LlmClient` の実装
///
/// これにより、動的ディスパッチを使用するクライアントも `Worker` で利用可能になる。
#[async_trait]
impl LlmClient for Box<dyn LlmClient> {
async fn stream(
&self,
request: Request,
) -> Result<Pin<Box<dyn Stream<Item = Result<Event, ClientError>> + Send>>, ClientError> {
(**self).stream(request).await
}
}

View File

@ -0,0 +1,69 @@
//! LLMクライアントエラー型
use std::fmt;
/// LLMクライアントのエラー
#[derive(Debug)]
pub enum ClientError {
/// HTTPリクエストエラー
Http(reqwest::Error),
/// JSONパースエラー
Json(serde_json::Error),
/// SSEパースエラー
Sse(String),
/// APIエラー (プロバイダからのエラーレスポンス)
Api {
status: Option<u16>,
code: Option<String>,
message: String,
},
/// 設定エラー
Config(String),
}
impl fmt::Display for ClientError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
ClientError::Http(e) => write!(f, "HTTP error: {}", e),
ClientError::Json(e) => write!(f, "JSON parse error: {}", e),
ClientError::Sse(msg) => write!(f, "SSE parse error: {}", msg),
ClientError::Api {
status,
code,
message,
} => {
write!(f, "API error")?;
if let Some(s) = status {
write!(f, " (status: {})", s)?;
}
if let Some(c) = code {
write!(f, " [{}]", c)?;
}
write!(f, ": {}", message)
}
ClientError::Config(msg) => write!(f, "Config error: {}", msg),
}
}
}
impl std::error::Error for ClientError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self {
ClientError::Http(e) => Some(e),
ClientError::Json(e) => Some(e),
_ => None,
}
}
}
impl From<reqwest::Error> for ClientError {
fn from(err: reqwest::Error) -> Self {
ClientError::Http(err)
}
}
impl From<serde_json::Error> for ClientError {
fn from(err: serde_json::Error) -> Self {
ClientError::Json(err)
}
}

View File

@ -0,0 +1,27 @@
//! LLMクライアント層
//!
//! 各LLMプロバイダと通信し、統一された[`Event`](crate::event::Event)ストリームを出力します。
//!
//! # サポートするプロバイダ
//!
//! - Anthropic (Claude)
//! - OpenAI (GPT-4, etc.)
//! - Google (Gemini)
//! - Ollama (ローカルLLM)
//!
//! # アーキテクチャ
//!
//! - [`LlmClient`] - プロバイダ共通のtrait
//! - `providers`: プロバイダ固有のクライアント実装
//! - `scheme`: APIスキーマリクエスト/レスポンス変換)
pub mod client;
pub mod error;
pub mod types;
pub mod providers;
pub mod scheme;
pub use client::*;
pub use error::*;
pub use types::*;

View File

@ -0,0 +1,200 @@
//! Anthropic プロバイダ実装
//!
//! Anthropic Messages APIと通信し、Eventストリームを出力
use std::pin::Pin;
use async_trait::async_trait;
use eventsource_stream::Eventsource;
use futures::{Stream, StreamExt, TryStreamExt, future::ready};
use reqwest::header::{CONTENT_TYPE, HeaderMap, HeaderValue};
use worker_types::Event;
use crate::llm_client::{ClientError, LlmClient, Request, scheme::anthropic::AnthropicScheme};
/// Anthropic クライアント
pub struct AnthropicClient {
/// HTTPクライアント
http_client: reqwest::Client,
/// APIキー
api_key: String,
/// モデル名
model: String,
/// スキーマ
scheme: AnthropicScheme,
/// ベースURL
base_url: String,
}
impl AnthropicClient {
/// 新しいAnthropicクライアントを作成
pub fn new(api_key: impl Into<String>, model: impl Into<String>) -> Self {
Self {
http_client: reqwest::Client::new(),
api_key: api_key.into(),
model: model.into(),
scheme: AnthropicScheme::default(),
base_url: "https://api.anthropic.com".to_string(),
}
}
/// カスタムHTTPクライアントを設定
pub fn with_http_client(mut self, client: reqwest::Client) -> Self {
self.http_client = client;
self
}
/// スキーマを設定
pub fn with_scheme(mut self, scheme: AnthropicScheme) -> Self {
self.scheme = scheme;
self
}
/// ベースURLを設定
pub fn with_base_url(mut self, url: impl Into<String>) -> Self {
self.base_url = url.into();
self
}
/// リクエストヘッダーを構築
fn build_headers(&self) -> Result<HeaderMap, ClientError> {
let mut headers = HeaderMap::new();
headers.insert(CONTENT_TYPE, HeaderValue::from_static("application/json"));
headers.insert(
"x-api-key",
HeaderValue::from_str(&self.api_key)
.map_err(|e| ClientError::Config(format!("Invalid API key: {}", e)))?,
);
headers.insert(
"anthropic-version",
HeaderValue::from_str(&self.scheme.api_version)
.map_err(|e| ClientError::Config(format!("Invalid API version: {}", e)))?,
);
// 細粒度ツールストリーミングを有効にする場合
if self.scheme.fine_grained_tool_streaming {
headers.insert(
"anthropic-beta",
HeaderValue::from_static("fine-grained-tool-streaming-2025-05-14"),
);
}
Ok(headers)
}
}
#[async_trait]
impl LlmClient for AnthropicClient {
async fn stream(
&self,
request: Request,
) -> Result<Pin<Box<dyn Stream<Item = Result<Event, ClientError>> + Send>>, ClientError> {
let url = format!("{}/v1/messages", self.base_url);
let headers = self.build_headers()?;
let body = self.scheme.build_request(&self.model, &request);
let response = self
.http_client
.post(&url)
.headers(headers)
.json(&body)
.send()
.await?;
// エラーレスポンスをチェック
if !response.status().is_success() {
let status = response.status().as_u16();
let text = response.text().await.unwrap_or_default();
// JSONでエラーをパースしてみる
if let Ok(json) = serde_json::from_str::<serde_json::Value>(&text) {
let error = json.get("error").unwrap_or(&json);
let code = error.get("type").and_then(|v| v.as_str()).map(String::from);
let message = error
.get("message")
.and_then(|v| v.as_str())
.unwrap_or(&text)
.to_string();
return Err(ClientError::Api {
status: Some(status),
code,
message,
});
}
return Err(ClientError::Api {
status: Some(status),
code: None,
message: text,
});
}
// SSEストリームを構築
let scheme = self.scheme.clone();
let byte_stream = response
.bytes_stream()
.map_err(|e| std::io::Error::other(e));
let event_stream = byte_stream.eventsource();
// AnthropicはBlockStopイベントに正しいblock_typeを含まないため、
// クライアント側で状態を追跡して補完する
let mut current_block_type = None;
let stream = event_stream.filter_map(move |result| {
ready(match result {
Ok(event) => {
// SSEイベントをパース
match scheme.parse_event(&event.event, &event.data) {
Ok(Some(mut evt)) => {
// ブロックタイプの追跡と修正
match &evt {
Event::BlockStart(start) => {
current_block_type = Some(start.block_type);
}
Event::BlockStop(stop) => {
if let Some(block_type) = current_block_type.take() {
// 正しいブロックタイプで上書き
// (Event::BlockStopの中身を置換)
evt = Event::BlockStop(worker_types::BlockStop {
block_type,
..stop.clone()
});
}
}
_ => {}
}
Some(Ok(evt))
}
Ok(None) => None,
Err(e) => Some(Err(e)),
}
}
Err(e) => Some(Err(ClientError::Sse(e.to_string()))),
})
});
Ok(Box::pin(stream))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_client_creation() {
let client = AnthropicClient::new("test-key", "claude-sonnet-4-20250514");
assert_eq!(client.model, "claude-sonnet-4-20250514");
}
#[test]
fn test_build_headers() {
let client = AnthropicClient::new("test-key", "claude-sonnet-4-20250514");
let headers = client.build_headers().unwrap();
assert!(headers.contains_key("x-api-key"));
assert!(headers.contains_key("anthropic-version"));
assert!(headers.contains_key("anthropic-beta"));
}
}

View File

@ -0,0 +1,185 @@
//! Gemini プロバイダ実装
//!
//! Google Gemini APIと通信し、Eventストリームを出力
use std::pin::Pin;
use async_trait::async_trait;
use eventsource_stream::Eventsource;
use futures::{Stream, StreamExt, TryStreamExt};
use reqwest::header::{CONTENT_TYPE, HeaderMap, HeaderValue};
use worker_types::Event;
use crate::llm_client::{ClientError, LlmClient, Request, scheme::gemini::GeminiScheme};
/// Gemini クライアント
pub struct GeminiClient {
/// HTTPクライアント
http_client: reqwest::Client,
/// APIキー
api_key: String,
/// モデル名
model: String,
/// スキーマ
scheme: GeminiScheme,
/// ベースURL
base_url: String,
}
impl GeminiClient {
/// 新しいGeminiクライアントを作成
pub fn new(api_key: impl Into<String>, model: impl Into<String>) -> Self {
Self {
http_client: reqwest::Client::new(),
api_key: api_key.into(),
model: model.into(),
scheme: GeminiScheme::default(),
base_url: "https://generativelanguage.googleapis.com".to_string(),
}
}
/// カスタムHTTPクライアントを設定
pub fn with_http_client(mut self, client: reqwest::Client) -> Self {
self.http_client = client;
self
}
/// スキーマを設定
pub fn with_scheme(mut self, scheme: GeminiScheme) -> Self {
self.scheme = scheme;
self
}
/// ベースURLを設定
pub fn with_base_url(mut self, url: impl Into<String>) -> Self {
self.base_url = url.into();
self
}
/// リクエストヘッダーを構築
fn build_headers(&self) -> Result<HeaderMap, ClientError> {
let mut headers = HeaderMap::new();
headers.insert(CONTENT_TYPE, HeaderValue::from_static("application/json"));
Ok(headers)
}
}
#[async_trait]
impl LlmClient for GeminiClient {
async fn stream(
&self,
request: Request,
) -> Result<Pin<Box<dyn Stream<Item = Result<Event, ClientError>> + Send>>, ClientError> {
// URL構築: base_url/v1beta/models/{model}:streamGenerateContent?alt=sse&key={api_key}
let url = format!(
"{}/v1beta/models/{}:streamGenerateContent?alt=sse&key={}",
self.base_url, self.model, self.api_key
);
let headers = self.build_headers()?;
let body = self.scheme.build_request(&request);
let response = self
.http_client
.post(&url)
.headers(headers)
.json(&body)
.send()
.await?;
// エラーレスポンスをチェック
if !response.status().is_success() {
let status = response.status().as_u16();
let text = response.text().await.unwrap_or_default();
// JSONでエラーをパースしてみる
if let Ok(json) = serde_json::from_str::<serde_json::Value>(&text) {
// Gemini error format: { "error": { "code": xxx, "message": "...", "status": "..." } }
let error = json.get("error").unwrap_or(&json);
let code = error
.get("status")
.and_then(|v| v.as_str())
.map(String::from);
let message = error
.get("message")
.and_then(|v| v.as_str())
.unwrap_or(&text)
.to_string();
return Err(ClientError::Api {
status: Some(status),
code,
message,
});
}
return Err(ClientError::Api {
status: Some(status),
code: None,
message: text,
});
}
// SSEストリームを構築
let scheme = self.scheme.clone();
let byte_stream = response
.bytes_stream()
.map_err(|e| std::io::Error::other(e));
let event_stream = byte_stream.eventsource();
let stream = event_stream
.map(move |result| {
match result {
Ok(event) => {
// SSEイベントをパース
// Geminiは "data: {...}" 形式で送る
match scheme.parse_event(&event.data) {
Ok(Some(events)) => Ok(Some(events)),
Ok(None) => Ok(None),
Err(e) => Err(e),
}
}
Err(e) => Err(ClientError::Sse(e.to_string())),
}
})
// flatten Option<Vec<Event>> stream to Stream<Event>
.map(|res| {
let s: Pin<Box<dyn Stream<Item = Result<Event, ClientError>> + Send>> = match res {
Ok(Some(events)) => Box::pin(futures::stream::iter(events.into_iter().map(Ok))),
Ok(None) => Box::pin(futures::stream::empty()),
Err(e) => Box::pin(futures::stream::once(async move { Err(e) })),
};
s
})
.flatten();
Ok(Box::pin(stream))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_client_creation() {
let client = GeminiClient::new("test-key", "gemini-2.0-flash");
assert_eq!(client.model, "gemini-2.0-flash");
}
#[test]
fn test_build_headers() {
let client = GeminiClient::new("test-key", "gemini-2.0-flash");
let headers = client.build_headers().unwrap();
assert!(headers.contains_key("content-type"));
}
#[test]
fn test_custom_base_url() {
let client = GeminiClient::new("test-key", "gemini-2.0-flash")
.with_base_url("https://custom.api.example.com");
assert_eq!(client.base_url, "https://custom.api.example.com");
}
}

View File

@ -0,0 +1,8 @@
//! プロバイダ実装
//!
//! 各プロバイダ固有のHTTPクライアント実装
pub mod anthropic;
pub mod gemini;
pub mod ollama;
pub mod openai;

View File

@ -0,0 +1,63 @@
//! Ollama プロバイダ実装
//!
//! OllamaはOpenAI互換APIを提供するため、OpenAIクライアントと互換性がある。
//! デフォルトのベースURLと認証設定が異なる。
use std::pin::Pin;
use async_trait::async_trait;
use futures::Stream;
use worker_types::Event;
use crate::llm_client::{
ClientError, LlmClient, Request, providers::openai::OpenAIClient, scheme::openai::OpenAIScheme,
};
/// Ollama クライアント
///
/// 内部的にOpenAIClientを使用するラッパー、もしくはOpenAIClientと同様の実装を持つ。
/// ここではOpenAIClient構成をカスタマイズして提供する。
pub struct OllamaClient {
inner: OpenAIClient,
}
impl OllamaClient {
/// 新しいOllamaクライアントを作成
pub fn new(model: impl Into<String>) -> Self {
// Ollama usually runs on localhost:11434/v1
// API key is "ollama" or ignored
let base_url = "http://localhost:11434";
let scheme = OpenAIScheme::new().with_legacy_max_tokens(true);
let client = OpenAIClient::new("ollama", model)
.with_base_url(base_url)
.with_scheme(scheme);
// Currently OpenAIScheme sets include_usage: true. Ollama supports checks?
// Assuming Ollama modern versions support usage.
Self { inner: client }
}
/// ベースURLを設定
pub fn with_base_url(mut self, url: impl Into<String>) -> Self {
self.inner = self.inner.with_base_url(url);
self
}
/// カスタムHTTPクライアントを設定
pub fn with_http_client(mut self, client: reqwest::Client) -> Self {
self.inner = self.inner.with_http_client(client);
self
}
}
#[async_trait]
impl LlmClient for OllamaClient {
async fn stream(
&self,
request: Request,
) -> Result<Pin<Box<dyn Stream<Item = Result<Event, ClientError>> + Send>>, ClientError> {
self.inner.stream(request).await
}
}

View File

@ -0,0 +1,200 @@
//! OpenAI プロバイダ実装
//!
//! OpenAI Chat Completions APIと通信し、Eventストリームを出力
use std::pin::Pin;
use async_trait::async_trait;
use eventsource_stream::Eventsource;
use futures::{Stream, StreamExt, TryStreamExt};
use reqwest::header::{CONTENT_TYPE, HeaderMap, HeaderValue};
use worker_types::Event;
use crate::llm_client::{ClientError, LlmClient, Request, scheme::openai::OpenAIScheme};
/// OpenAI クライアント
pub struct OpenAIClient {
/// HTTPクライアント
http_client: reqwest::Client,
/// APIキー
api_key: String,
/// モデル名
model: String,
/// スキーマ
scheme: OpenAIScheme,
/// ベースURL
base_url: String,
}
impl OpenAIClient {
/// 新しいOpenAIクライアントを作成
pub fn new(api_key: impl Into<String>, model: impl Into<String>) -> Self {
Self {
http_client: reqwest::Client::new(),
api_key: api_key.into(),
model: model.into(),
scheme: OpenAIScheme::default(),
base_url: "https://api.openai.com".to_string(),
}
}
/// カスタムHTTPクライアントを設定
pub fn with_http_client(mut self, client: reqwest::Client) -> Self {
self.http_client = client;
self
}
/// スキーマを設定
pub fn with_scheme(mut self, scheme: OpenAIScheme) -> Self {
self.scheme = scheme;
self
}
/// ベースURLを設定
pub fn with_base_url(mut self, url: impl Into<String>) -> Self {
self.base_url = url.into();
self
}
/// リクエストヘッダーを構築
fn build_headers(&self) -> Result<HeaderMap, ClientError> {
let mut headers = HeaderMap::new();
headers.insert(CONTENT_TYPE, HeaderValue::from_static("application/json"));
let api_key_val = if self.api_key.is_empty() {
// For providers like Ollama, API key might be empty/dummy.
// But typical OpenAI requires it.
// We'll allow empty if user intends it, but usually it's checked.
HeaderValue::from_static("")
} else {
let mut val = HeaderValue::from_str(&format!("Bearer {}", self.api_key))
.map_err(|e| ClientError::Config(format!("Invalid API key: {}", e)))?;
val.set_sensitive(true);
val
};
if !api_key_val.is_empty() {
headers.insert("Authorization", api_key_val);
}
Ok(headers)
}
}
#[async_trait]
impl LlmClient for OpenAIClient {
async fn stream(
&self,
request: Request,
) -> Result<Pin<Box<dyn Stream<Item = Result<Event, ClientError>> + Send>>, ClientError> {
// Construct the URL: base_url usually ends without slash, path starts with slash or vice versa.
// Standard OpenAI base is "https://api.openai.com". Endpoint is "/v1/chat/completions".
// If external base_url includes /v1, we should be careful.
// Let's assume defaults. If user provides "http://localhost:11434/v1", we append "/chat/completions".
// Or cleaner: user provides full base up to version?
// Anthropic client uses "{}/v1/messages".
// Let's stick to appending "/v1/chat/completions" if base is just host,
// OR assume base includes /v1 if user overrides it?
// Let's use robust joining or simple assumption matching Anthropic pattern:
// Default: https://api.openai.com -> https://api.openai.com/v1/chat/completions
// However, Ollama default is http://localhost:11434/v1/chat/completions if using OpenAI compact.
// If we configure base_url via `with_base_url`, it's flexible.
// Let's try to detect if /v1 is present or just append consistently.
// Ideally `base_url` should be the root passed to `new`.
let url = if self.base_url.ends_with("/v1") {
format!("{}/chat/completions", self.base_url)
} else if self.base_url.ends_with("/") {
format!("{}v1/chat/completions", self.base_url)
} else {
format!("{}/v1/chat/completions", self.base_url)
};
let headers = self.build_headers()?;
let body = self.scheme.build_request(&self.model, &request);
let response = self
.http_client
.post(&url)
.headers(headers)
.json(&body)
.send()
.await?;
// エラーレスポンスをチェック
if !response.status().is_success() {
let status = response.status().as_u16();
let text = response.text().await.unwrap_or_default();
// JSONでエラーをパースしてみる
if let Ok(json) = serde_json::from_str::<serde_json::Value>(&text) {
// OpenAI error format: { "error": { "message": "...", "type": "...", ... } }
let error = json.get("error").unwrap_or(&json);
let code = error.get("type").and_then(|v| v.as_str()).map(String::from);
let message = error
.get("message")
.and_then(|v| v.as_str())
.unwrap_or(&text)
.to_string();
return Err(ClientError::Api {
status: Some(status),
code,
message,
});
}
return Err(ClientError::Api {
status: Some(status),
code: None,
message: text,
});
}
// SSEストリームを構築
let scheme = self.scheme.clone();
let byte_stream = response
.bytes_stream()
.map_err(|e| std::io::Error::other(e));
let event_stream = byte_stream.eventsource();
let stream = event_stream
.map(move |result| {
match result {
Ok(event) => {
// SSEイベントをパース
// OpenAI stream events are "data: {...}"
// event.event is usually "message" (default) or empty.
// parse_event takes data string.
if event.data == "[DONE]" {
// End of stream handled inside parse_event usually returning None
Ok(None)
} else {
match scheme.parse_event(&event.data) {
Ok(Some(events)) => Ok(Some(events)),
Ok(None) => Ok(None),
Err(e) => Err(e),
}
}
}
Err(e) => Err(ClientError::Sse(e.to_string())),
}
})
// flatten Option<Vec<Event>> stream to Stream<Event>
// map returns Result<Option<Vec<Event>>, Error>
// We want Stream<Item = Result<Event, Error>>
.map(|res| {
let s: Pin<Box<dyn Stream<Item = Result<Event, ClientError>> + Send>> = match res {
Ok(Some(events)) => Box::pin(futures::stream::iter(events.into_iter().map(Ok))),
Ok(None) => Box::pin(futures::stream::empty()),
Err(e) => Box::pin(futures::stream::once(async move { Err(e) })),
};
s
})
.flatten();
Ok(Box::pin(stream))
}
}

View File

@ -0,0 +1,372 @@
//! Anthropic SSEイベントパース
//!
//! Anthropic Messages APIのSSEイベントをパースし、統一Event型に変換
use serde::Deserialize;
use worker_types::{
BlockDelta, BlockMetadata, BlockStart, BlockStop, BlockType, DeltaContent, ErrorEvent, Event,
PingEvent, ResponseStatus, StatusEvent, UsageEvent,
};
use crate::llm_client::ClientError;
use super::AnthropicScheme;
/// Anthropic SSEイベントタイプ
#[derive(Debug, Clone, PartialEq, Eq)]
pub(crate) enum AnthropicEventType {
MessageStart,
ContentBlockStart,
ContentBlockDelta,
ContentBlockStop,
MessageDelta,
MessageStop,
Ping,
Error,
}
impl AnthropicEventType {
/// イベントタイプ文字列からパース
pub(crate) fn parse(s: &str) -> Option<Self> {
match s {
"message_start" => Some(Self::MessageStart),
"content_block_start" => Some(Self::ContentBlockStart),
"content_block_delta" => Some(Self::ContentBlockDelta),
"content_block_stop" => Some(Self::ContentBlockStop),
"message_delta" => Some(Self::MessageDelta),
"message_stop" => Some(Self::MessageStop),
"ping" => Some(Self::Ping),
"error" => Some(Self::Error),
_ => None,
}
}
}
// ============================================================================
// SSEイベントのJSON構造
// ============================================================================
/// message_start イベント
#[derive(Debug, Deserialize)]
pub(crate) struct MessageStartEvent {
pub message: MessageStartMessage,
}
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
pub(crate) struct MessageStartMessage {
pub id: String,
pub model: String,
pub usage: Option<UsageData>,
}
/// content_block_start イベント
#[derive(Debug, Deserialize)]
pub(crate) struct ContentBlockStartEvent {
pub index: usize,
pub content_block: ContentBlock,
}
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
#[serde(tag = "type")]
pub(crate) enum ContentBlock {
#[serde(rename = "text")]
Text { text: String },
#[serde(rename = "thinking")]
Thinking { thinking: String },
#[serde(rename = "tool_use")]
ToolUse {
id: String,
name: String,
input: serde_json::Value,
},
}
/// content_block_delta イベント
#[derive(Debug, Deserialize)]
pub(crate) struct ContentBlockDeltaEvent {
pub index: usize,
pub delta: DeltaBlock,
}
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
#[serde(tag = "type")]
pub(crate) enum DeltaBlock {
#[serde(rename = "text_delta")]
TextDelta { text: String },
#[serde(rename = "thinking_delta")]
ThinkingDelta { thinking: String },
#[serde(rename = "input_json_delta")]
InputJsonDelta { partial_json: String },
#[serde(rename = "signature_delta")]
SignatureDelta { signature: String },
}
/// content_block_stop イベント
#[derive(Debug, Deserialize)]
pub(crate) struct ContentBlockStopEvent {
pub index: usize,
}
/// message_delta イベント
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
pub(crate) struct MessageDeltaEvent {
pub delta: MessageDeltaData,
pub usage: Option<UsageData>,
}
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
pub(crate) struct MessageDeltaData {
pub stop_reason: Option<String>,
pub stop_sequence: Option<String>,
}
/// 使用量データ
#[derive(Debug, Deserialize)]
pub(crate) struct UsageData {
pub input_tokens: Option<u64>,
pub output_tokens: Option<u64>,
pub cache_read_input_tokens: Option<u64>,
pub cache_creation_input_tokens: Option<u64>,
}
/// エラーイベント
#[derive(Debug, Deserialize)]
pub(crate) struct ErrorEventData {
pub error: ErrorDetail,
}
#[derive(Debug, Deserialize)]
pub(crate) struct ErrorDetail {
#[serde(rename = "type")]
pub error_type: String,
pub message: String,
}
// ============================================================================
// イベント変換
// ============================================================================
impl AnthropicScheme {
/// SSEイベントをEvent型に変換
///
/// # Arguments
/// * `event_type` - SSEイベントタイプ
/// * `data` - イベントデータJSON文字列
///
/// # Returns
/// * `Ok(Some(Event))` - 変換成功
/// * `Ok(None)` - イベントを無視unknown event等
/// * `Err(ClientError)` - パースエラー
pub(crate) fn parse_event(
&self,
event_type: &str,
data: &str,
) -> Result<Option<Event>, ClientError> {
let Some(event_type) = AnthropicEventType::parse(event_type) else {
// Unknown event type, ignore
return Ok(None);
};
match event_type {
AnthropicEventType::MessageStart => {
let event: MessageStartEvent = serde_json::from_str(data)?;
// message_start時にUsageイベントがあれば出力
if let Some(usage) = event.message.usage {
return Ok(Some(Event::Usage(self.convert_usage(&usage))));
}
// Statusイベントとして開始を通知
Ok(Some(Event::Status(StatusEvent {
status: ResponseStatus::Started,
})))
}
AnthropicEventType::ContentBlockStart => {
let event: ContentBlockStartEvent = serde_json::from_str(data)?;
Ok(Some(self.convert_block_start(&event)))
}
AnthropicEventType::ContentBlockDelta => {
let event: ContentBlockDeltaEvent = serde_json::from_str(data)?;
Ok(self.convert_block_delta(&event))
}
AnthropicEventType::ContentBlockStop => {
let event: ContentBlockStopEvent = serde_json::from_str(data)?;
// Note: BlockStopにはblock_typeが必要だが、AnthropicはStopイベントに含めない
// Timeline層がBlockStartを追跡して正しいblock_typeを知る
Ok(Some(Event::BlockStop(BlockStop {
index: event.index,
block_type: BlockType::Text, // Timeline層で上書きされる
stop_reason: None,
})))
}
AnthropicEventType::MessageDelta => {
let event: MessageDeltaEvent = serde_json::from_str(data)?;
// Usage情報があれば出力
if let Some(usage) = event.usage {
return Ok(Some(Event::Usage(self.convert_usage(&usage))));
}
Ok(None)
}
AnthropicEventType::MessageStop => Ok(Some(Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}))),
AnthropicEventType::Ping => Ok(Some(Event::Ping(PingEvent { timestamp: None }))),
AnthropicEventType::Error => {
let event: ErrorEventData = serde_json::from_str(data)?;
Ok(Some(Event::Error(ErrorEvent {
code: Some(event.error.error_type),
message: event.error.message,
})))
}
}
}
fn convert_block_start(&self, event: &ContentBlockStartEvent) -> Event {
let (block_type, metadata) = match &event.content_block {
ContentBlock::Text { .. } => (BlockType::Text, BlockMetadata::Text),
ContentBlock::Thinking { .. } => (BlockType::Thinking, BlockMetadata::Thinking),
ContentBlock::ToolUse { id, name, .. } => (
BlockType::ToolUse,
BlockMetadata::ToolUse {
id: id.clone(),
name: name.clone(),
},
),
};
Event::BlockStart(BlockStart {
index: event.index,
block_type,
metadata,
})
}
fn convert_block_delta(&self, event: &ContentBlockDeltaEvent) -> Option<Event> {
let delta = match &event.delta {
DeltaBlock::TextDelta { text } => DeltaContent::Text(text.clone()),
DeltaBlock::ThinkingDelta { thinking } => DeltaContent::Thinking(thinking.clone()),
DeltaBlock::InputJsonDelta { partial_json } => {
DeltaContent::InputJson(partial_json.clone())
}
DeltaBlock::SignatureDelta { .. } => {
// signature_delta は無視
return None;
}
};
Some(Event::BlockDelta(BlockDelta {
index: event.index,
delta,
}))
}
fn convert_usage(&self, usage: &UsageData) -> UsageEvent {
let input = usage.input_tokens.unwrap_or(0);
let output = usage.output_tokens.unwrap_or(0);
UsageEvent {
input_tokens: usage.input_tokens,
output_tokens: usage.output_tokens,
total_tokens: Some(input + output),
cache_read_input_tokens: usage.cache_read_input_tokens,
cache_creation_input_tokens: usage.cache_creation_input_tokens,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_parse_message_start() {
let scheme = AnthropicScheme::new();
let data = r#"{"type":"message_start","message":{"id":"msg_123","type":"message","role":"assistant","content":[],"model":"claude-sonnet-4-20250514","stop_reason":null,"stop_sequence":null,"usage":{"input_tokens":10,"output_tokens":0}}}"#;
let event = scheme.parse_event("message_start", data).unwrap().unwrap();
match event {
Event::Usage(u) => {
assert_eq!(u.input_tokens, Some(10));
}
_ => panic!("Expected Usage event"),
}
}
#[test]
fn test_parse_content_block_start_text() {
let scheme = AnthropicScheme::new();
let data =
r#"{"type":"content_block_start","index":0,"content_block":{"type":"text","text":""}}"#;
let event = scheme
.parse_event("content_block_start", data)
.unwrap()
.unwrap();
match event {
Event::BlockStart(s) => {
assert_eq!(s.index, 0);
assert_eq!(s.block_type, BlockType::Text);
}
_ => panic!("Expected BlockStart event"),
}
}
#[test]
fn test_parse_content_block_delta_text() {
let scheme = AnthropicScheme::new();
let data = r#"{"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":"Hello"}}"#;
let event = scheme
.parse_event("content_block_delta", data)
.unwrap()
.unwrap();
match event {
Event::BlockDelta(d) => {
assert_eq!(d.index, 0);
match d.delta {
DeltaContent::Text(t) => assert_eq!(t, "Hello"),
_ => panic!("Expected Text delta"),
}
}
_ => panic!("Expected BlockDelta event"),
}
}
#[test]
fn test_parse_tool_use_start() {
let scheme = AnthropicScheme::new();
let data = r#"{"type":"content_block_start","index":1,"content_block":{"type":"tool_use","id":"toolu_123","name":"get_weather","input":{}}}"#;
let event = scheme
.parse_event("content_block_start", data)
.unwrap()
.unwrap();
match event {
Event::BlockStart(s) => {
assert_eq!(s.block_type, BlockType::ToolUse);
match s.metadata {
BlockMetadata::ToolUse { id, name } => {
assert_eq!(id, "toolu_123");
assert_eq!(name, "get_weather");
}
_ => panic!("Expected ToolUse metadata"),
}
}
_ => panic!("Expected BlockStart event"),
}
}
#[test]
fn test_parse_ping() {
let scheme = AnthropicScheme::new();
let data = r#"{"type":"ping"}"#;
let event = scheme.parse_event("ping", data).unwrap().unwrap();
match event {
Event::Ping(_) => {}
_ => panic!("Expected Ping event"),
}
}
}

View File

@ -0,0 +1,40 @@
//! Anthropic Messages API スキーマ
//!
//! - リクエストJSON生成
//! - SSEイベントパース → Event変換
mod events;
mod request;
/// Anthropicスキーマ
///
/// Anthropic Messages APIのリクエスト/レスポンス変換を担当
#[derive(Debug, Clone)]
pub struct AnthropicScheme {
/// APIバージョン
pub api_version: String,
/// 細粒度ツールストリーミングを有効にするか
pub fine_grained_tool_streaming: bool,
}
impl Default for AnthropicScheme {
fn default() -> Self {
Self {
api_version: "2023-06-01".to_string(),
fine_grained_tool_streaming: true,
}
}
}
impl AnthropicScheme {
/// 新しいスキーマを作成
pub fn new() -> Self {
Self::default()
}
/// 細粒度ツールストリーミングを有効/無効にする
pub fn with_fine_grained_tool_streaming(mut self, enabled: bool) -> Self {
self.fine_grained_tool_streaming = enabled;
self
}
}

View File

@ -0,0 +1,195 @@
//! Anthropic リクエスト生成
use serde::Serialize;
use crate::llm_client::{
Request,
types::{ContentPart, Message, MessageContent, Role, ToolDefinition},
};
use super::AnthropicScheme;
/// Anthropic APIへのリクエストボディ
#[derive(Debug, Serialize)]
pub(crate) struct AnthropicRequest {
pub model: String,
pub max_tokens: u32,
#[serde(skip_serializing_if = "Option::is_none")]
pub system: Option<String>,
pub messages: Vec<AnthropicMessage>,
#[serde(skip_serializing_if = "Vec::is_empty")]
pub tools: Vec<AnthropicTool>,
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>,
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>,
#[serde(skip_serializing_if = "Vec::is_empty")]
pub stop_sequences: Vec<String>,
pub stream: bool,
}
/// Anthropic メッセージ
#[derive(Debug, Serialize)]
pub(crate) struct AnthropicMessage {
pub role: String,
pub content: AnthropicContent,
}
/// Anthropic コンテンツ
#[derive(Debug, Serialize)]
#[serde(untagged)]
pub(crate) enum AnthropicContent {
Text(String),
Parts(Vec<AnthropicContentPart>),
}
/// Anthropic コンテンツパーツ
#[derive(Debug, Serialize)]
#[serde(tag = "type")]
pub(crate) enum AnthropicContentPart {
#[serde(rename = "text")]
Text { text: String },
#[serde(rename = "tool_use")]
ToolUse {
id: String,
name: String,
input: serde_json::Value,
},
#[serde(rename = "tool_result")]
ToolResult {
tool_use_id: String,
content: String,
},
}
/// Anthropic ツール定義
#[derive(Debug, Serialize)]
pub(crate) struct AnthropicTool {
pub name: String,
#[serde(skip_serializing_if = "Option::is_none")]
pub description: Option<String>,
pub input_schema: serde_json::Value,
}
impl AnthropicScheme {
/// RequestからAnthropicのリクエストボディを構築
pub(crate) fn build_request(&self, model: &str, request: &Request) -> AnthropicRequest {
let messages = request
.messages
.iter()
.map(|m| self.convert_message(m))
.collect();
let tools = request.tools.iter().map(|t| self.convert_tool(t)).collect();
AnthropicRequest {
model: model.to_string(),
max_tokens: request.config.max_tokens.unwrap_or(4096),
system: request.system_prompt.clone(),
messages,
tools,
temperature: request.config.temperature,
top_p: request.config.top_p,
stop_sequences: request.config.stop_sequences.clone(),
stream: true,
}
}
fn convert_message(&self, message: &Message) -> AnthropicMessage {
let role = match message.role {
Role::User => "user",
Role::Assistant => "assistant",
};
let content = match &message.content {
MessageContent::Text(text) => AnthropicContent::Text(text.clone()),
MessageContent::ToolResult {
tool_use_id,
content,
} => AnthropicContent::Parts(vec![AnthropicContentPart::ToolResult {
tool_use_id: tool_use_id.clone(),
content: content.clone(),
}]),
MessageContent::Parts(parts) => {
let converted: Vec<_> = parts
.iter()
.map(|p| match p {
ContentPart::Text { text } => {
AnthropicContentPart::Text { text: text.clone() }
}
ContentPart::ToolUse { id, name, input } => AnthropicContentPart::ToolUse {
id: id.clone(),
name: name.clone(),
input: input.clone(),
},
ContentPart::ToolResult {
tool_use_id,
content,
} => AnthropicContentPart::ToolResult {
tool_use_id: tool_use_id.clone(),
content: content.clone(),
},
})
.collect();
AnthropicContent::Parts(converted)
}
};
AnthropicMessage {
role: role.to_string(),
content,
}
}
fn convert_tool(&self, tool: &ToolDefinition) -> AnthropicTool {
AnthropicTool {
name: tool.name.clone(),
description: tool.description.clone(),
input_schema: tool.input_schema.clone(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_build_simple_request() {
let scheme = AnthropicScheme::new();
let request = Request::new()
.system("You are a helpful assistant.")
.user("Hello!");
let anthropic_req = scheme.build_request("claude-sonnet-4-20250514", &request);
assert_eq!(anthropic_req.model, "claude-sonnet-4-20250514");
assert_eq!(
anthropic_req.system,
Some("You are a helpful assistant.".to_string())
);
assert_eq!(anthropic_req.messages.len(), 1);
assert!(anthropic_req.stream);
}
#[test]
fn test_build_request_with_tool() {
let scheme = AnthropicScheme::new();
let request = Request::new().user("What's the weather?").tool(
ToolDefinition::new("get_weather")
.description("Get current weather")
.input_schema(serde_json::json!({
"type": "object",
"properties": {
"location": { "type": "string" }
},
"required": ["location"]
})),
);
let anthropic_req = scheme.build_request("claude-sonnet-4-20250514", &request);
assert_eq!(anthropic_req.tools.len(), 1);
assert_eq!(anthropic_req.tools[0].name, "get_weather");
}
}

View File

@ -0,0 +1,328 @@
//! Gemini SSEイベントパース
//!
//! Google Gemini APIのSSEイベントをパースし、統一Event型に変換
use serde::Deserialize;
use worker_types::{
BlockMetadata, BlockStart, BlockStop, BlockType, Event, StopReason, UsageEvent,
};
use crate::llm_client::ClientError;
use super::GeminiScheme;
// ============================================================================
// SSEイベントのJSON構造
// ============================================================================
/// Gemini GenerateContentResponse (ストリーミングチャンク)
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub(crate) struct GenerateContentResponse {
/// 候補
pub candidates: Option<Vec<Candidate>>,
/// 使用量メタデータ
pub usage_metadata: Option<UsageMetadata>,
/// プロンプトフィードバック
pub prompt_feedback: Option<PromptFeedback>,
/// モデルバージョン
pub model_version: Option<String>,
}
/// 候補
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub(crate) struct Candidate {
/// コンテンツ
pub content: Option<CandidateContent>,
/// 完了理由
pub finish_reason: Option<String>,
/// インデックス
pub index: Option<usize>,
/// 安全性評価
pub safety_ratings: Option<Vec<SafetyRating>>,
}
/// 候補コンテンツ
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
pub(crate) struct CandidateContent {
/// パーツ
pub parts: Option<Vec<CandidatePart>>,
/// ロール
pub role: Option<String>,
}
/// 候補パーツ
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub(crate) struct CandidatePart {
/// テキスト
pub text: Option<String>,
/// 関数呼び出し
pub function_call: Option<FunctionCall>,
}
/// 関数呼び出し
#[derive(Debug, Deserialize)]
pub(crate) struct FunctionCall {
/// 関数名
pub name: String,
/// 引数
pub args: Option<serde_json::Value>,
}
/// 使用量メタデータ
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub(crate) struct UsageMetadata {
/// プロンプトトークン数
pub prompt_token_count: Option<u64>,
/// 候補トークン数
pub candidates_token_count: Option<u64>,
/// 合計トークン数
pub total_token_count: Option<u64>,
}
/// プロンプトフィードバック
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
#[serde(rename_all = "camelCase")]
pub(crate) struct PromptFeedback {
/// ブロック理由
pub block_reason: Option<String>,
/// 安全性評価
pub safety_ratings: Option<Vec<SafetyRating>>,
}
/// 安全性評価
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
pub(crate) struct SafetyRating {
/// カテゴリ
pub category: Option<String>,
/// 確率
pub probability: Option<String>,
}
// ============================================================================
// イベント変換
// ============================================================================
impl GeminiScheme {
/// SSEデータをEvent型に変換
///
/// # Arguments
/// * `data` - SSEイベントデータJSON文字列
///
/// # Returns
/// * `Ok(Some(Vec<Event>))` - 変換成功
/// * `Ok(None)` - イベントを無視
/// * `Err(ClientError)` - パースエラー
pub(crate) fn parse_event(&self, data: &str) -> Result<Option<Vec<Event>>, ClientError> {
// データが空または無効な場合はスキップ
if data.is_empty() || data == "[DONE]" {
return Ok(None);
}
let response: GenerateContentResponse =
serde_json::from_str(data).map_err(|e| ClientError::Api {
status: None,
code: Some("parse_error".to_string()),
message: format!("Failed to parse Gemini SSE data: {} -> {}", e, data),
})?;
let mut events = Vec::new();
// 使用量メタデータ
if let Some(usage) = response.usage_metadata {
events.push(self.convert_usage(&usage));
}
// 候補を処理
if let Some(candidates) = response.candidates {
for candidate in candidates {
let candidate_index = candidate.index.unwrap_or(0);
if let Some(content) = candidate.content {
if let Some(parts) = content.parts {
for (part_index, part) in parts.iter().enumerate() {
// テキストデルタ
if let Some(text) = &part.text {
if !text.is_empty() {
// Geminiは明示的なBlockStartを送らないため、
// TextDeltaを直接送るTimelineが暗黙的に開始を処理
events.push(Event::text_delta(part_index, text.clone()));
}
}
// 関数呼び出し
if let Some(function_call) = &part.function_call {
// 関数呼び出しの開始
// Geminiでは関数呼び出しは一度に送られることが多い
// ストリーミング引数が有効な場合は部分的に送られる可能性がある
// 関数呼び出しIDはGeminiにはないので、名前をIDとして使用
let function_id = format!("call_{}", function_call.name);
events.push(Event::BlockStart(BlockStart {
index: candidate_index * 10 + part_index, // 複合インデックス
block_type: BlockType::ToolUse,
metadata: BlockMetadata::ToolUse {
id: function_id,
name: function_call.name.clone(),
},
}));
// 引数がある場合はデルタとして送る
if let Some(args) = &function_call.args {
let args_str = serde_json::to_string(args).unwrap_or_default();
if !args_str.is_empty() && args_str != "null" {
events.push(Event::tool_input_delta(
candidate_index * 10 + part_index,
args_str,
));
}
}
}
}
}
}
// 完了理由
if let Some(finish_reason) = candidate.finish_reason {
let stop_reason = match finish_reason.as_str() {
"STOP" => Some(StopReason::EndTurn),
"MAX_TOKENS" => Some(StopReason::MaxTokens),
"SAFETY" | "RECITATION" | "OTHER" => Some(StopReason::EndTurn),
_ => None,
};
// テキストブロックの停止
events.push(Event::BlockStop(BlockStop {
index: candidate_index,
block_type: BlockType::Text,
stop_reason,
}));
}
}
}
if events.is_empty() {
Ok(None)
} else {
Ok(Some(events))
}
}
fn convert_usage(&self, usage: &UsageMetadata) -> Event {
Event::Usage(UsageEvent {
input_tokens: usage.prompt_token_count,
output_tokens: usage.candidates_token_count,
total_tokens: usage.total_token_count,
cache_read_input_tokens: None,
cache_creation_input_tokens: None,
})
}
}
#[cfg(test)]
mod tests {
use super::*;
use worker_types::DeltaContent;
#[test]
fn test_parse_text_response() {
let scheme = GeminiScheme::new();
let data =
r#"{"candidates":[{"content":{"parts":[{"text":"Hello"}],"role":"model"},"index":0}]}"#;
let events = scheme.parse_event(data).unwrap().unwrap();
assert_eq!(events.len(), 1);
if let Event::BlockDelta(delta) = &events[0] {
assert_eq!(delta.index, 0);
if let DeltaContent::Text(text) = &delta.delta {
assert_eq!(text, "Hello");
} else {
panic!("Expected text delta");
}
} else {
panic!("Expected BlockDelta");
}
}
#[test]
fn test_parse_usage_metadata() {
let scheme = GeminiScheme::new();
let data = r#"{"candidates":[{"content":{"parts":[{"text":"Hi"}],"role":"model"},"index":0}],"usageMetadata":{"promptTokenCount":10,"candidatesTokenCount":5,"totalTokenCount":15}}"#;
let events = scheme.parse_event(data).unwrap().unwrap();
// Usageイベントが含まれるはず
let usage_event = events.iter().find(|e| matches!(e, Event::Usage(_)));
assert!(usage_event.is_some());
if let Event::Usage(usage) = usage_event.unwrap() {
assert_eq!(usage.input_tokens, Some(10));
assert_eq!(usage.output_tokens, Some(5));
assert_eq!(usage.total_tokens, Some(15));
}
}
#[test]
fn test_parse_function_call() {
let scheme = GeminiScheme::new();
let data = r#"{"candidates":[{"content":{"parts":[{"functionCall":{"name":"get_weather","args":{"location":"Tokyo"}}}],"role":"model"},"index":0}]}"#;
let events = scheme.parse_event(data).unwrap().unwrap();
// BlockStartイベントがあるはず
let start_event = events.iter().find(|e| matches!(e, Event::BlockStart(_)));
assert!(start_event.is_some());
if let Event::BlockStart(start) = start_event.unwrap() {
assert_eq!(start.block_type, BlockType::ToolUse);
if let BlockMetadata::ToolUse { id: _, name } = &start.metadata {
assert_eq!(name, "get_weather");
} else {
panic!("Expected ToolUse metadata");
}
}
// 引数デルタもあるはず
let delta_event = events.iter().find(|e| {
if let Event::BlockDelta(d) = e {
matches!(d.delta, DeltaContent::InputJson(_))
} else {
false
}
});
assert!(delta_event.is_some());
}
#[test]
fn test_parse_finish_reason() {
let scheme = GeminiScheme::new();
let data = r#"{"candidates":[{"content":{"parts":[{"text":"Done"}],"role":"model"},"finishReason":"STOP","index":0}]}"#;
let events = scheme.parse_event(data).unwrap().unwrap();
// BlockStopイベントがあるはず
let stop_event = events.iter().find(|e| matches!(e, Event::BlockStop(_)));
assert!(stop_event.is_some());
if let Event::BlockStop(stop) = stop_event.unwrap() {
assert_eq!(stop.stop_reason, Some(StopReason::EndTurn));
}
}
#[test]
fn test_parse_empty_data() {
let scheme = GeminiScheme::new();
assert!(scheme.parse_event("").unwrap().is_none());
assert!(scheme.parse_event("[DONE]").unwrap().is_none());
}
}

View File

@ -0,0 +1,29 @@
//! Google Gemini API スキーマ
//!
//! - リクエストJSON生成
//! - SSEイベントパース → Event変換
mod events;
mod request;
/// Geminiスキーマ
///
/// Google Gemini APIのリクエスト/レスポンス変換を担当
#[derive(Debug, Clone, Default)]
pub struct GeminiScheme {
/// ストリーミング関数呼び出し引数を有効にするか
pub stream_function_call_arguments: bool,
}
impl GeminiScheme {
/// 新しいスキーマを作成
pub fn new() -> Self {
Self::default()
}
/// ストリーミング関数呼び出し引数を有効/無効にする
pub fn with_stream_function_call_arguments(mut self, enabled: bool) -> Self {
self.stream_function_call_arguments = enabled;
self
}
}

View File

@ -0,0 +1,317 @@
//! Gemini リクエスト生成
//!
//! Google Gemini APIへのリクエストボディを構築
use serde::Serialize;
use serde_json::Value;
use crate::llm_client::{
Request,
types::{ContentPart, Message, MessageContent, Role, ToolDefinition},
};
use super::GeminiScheme;
/// Gemini APIへのリクエストボディ
#[derive(Debug, Serialize)]
#[serde(rename_all = "camelCase")]
pub(crate) struct GeminiRequest {
/// コンテンツ(会話履歴)
pub contents: Vec<GeminiContent>,
/// システム指示
#[serde(skip_serializing_if = "Option::is_none")]
pub system_instruction: Option<GeminiContent>,
/// ツール定義
#[serde(skip_serializing_if = "Vec::is_empty")]
pub tools: Vec<GeminiTool>,
/// ツール設定
#[serde(skip_serializing_if = "Option::is_none")]
pub tool_config: Option<GeminiToolConfig>,
/// 生成設定
#[serde(skip_serializing_if = "Option::is_none")]
pub generation_config: Option<GeminiGenerationConfig>,
}
/// Gemini コンテンツ
#[derive(Debug, Serialize)]
pub(crate) struct GeminiContent {
/// ロール
pub role: String,
/// パーツ
pub parts: Vec<GeminiPart>,
}
/// Gemini パーツ
#[derive(Debug, Serialize)]
#[serde(untagged)]
pub(crate) enum GeminiPart {
/// テキストパーツ
Text { text: String },
/// 関数呼び出しパーツ
FunctionCall {
#[serde(rename = "functionCall")]
function_call: GeminiFunctionCall,
},
/// 関数レスポンスパーツ
FunctionResponse {
#[serde(rename = "functionResponse")]
function_response: GeminiFunctionResponse,
},
}
/// Gemini 関数呼び出し
#[derive(Debug, Serialize)]
pub(crate) struct GeminiFunctionCall {
pub name: String,
pub args: Value,
}
/// Gemini 関数レスポンス
#[derive(Debug, Serialize)]
pub(crate) struct GeminiFunctionResponse {
pub name: String,
pub response: GeminiFunctionResponseContent,
}
/// Gemini 関数レスポンス内容
#[derive(Debug, Serialize)]
pub(crate) struct GeminiFunctionResponseContent {
pub name: String,
pub content: Value,
}
/// Gemini ツール定義
#[derive(Debug, Serialize)]
#[serde(rename_all = "camelCase")]
pub(crate) struct GeminiTool {
/// 関数宣言
pub function_declarations: Vec<GeminiFunctionDeclaration>,
}
/// Gemini 関数宣言
#[derive(Debug, Serialize)]
pub(crate) struct GeminiFunctionDeclaration {
/// 関数名
pub name: String,
/// 説明
#[serde(skip_serializing_if = "Option::is_none")]
pub description: Option<String>,
/// パラメータスキーマ
pub parameters: Value,
}
/// Gemini ツール設定
#[derive(Debug, Serialize)]
#[serde(rename_all = "camelCase")]
pub(crate) struct GeminiToolConfig {
/// 関数呼び出し設定
pub function_calling_config: GeminiFunctionCallingConfig,
}
/// Gemini 関数呼び出し設定
#[derive(Debug, Serialize)]
#[serde(rename_all = "camelCase")]
pub(crate) struct GeminiFunctionCallingConfig {
/// モード: AUTO, ANY, NONE
#[serde(skip_serializing_if = "Option::is_none")]
pub mode: Option<String>,
/// ストリーミング関数呼び出し引数を有効にするか
#[serde(skip_serializing_if = "Option::is_none")]
pub stream_function_call_arguments: Option<bool>,
}
/// Gemini 生成設定
#[derive(Debug, Serialize)]
#[serde(rename_all = "camelCase")]
pub(crate) struct GeminiGenerationConfig {
/// 最大出力トークン数
#[serde(skip_serializing_if = "Option::is_none")]
pub max_output_tokens: Option<u32>,
/// Temperature
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>,
/// Top P
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>,
/// ストップシーケンス
#[serde(skip_serializing_if = "Vec::is_empty")]
pub stop_sequences: Vec<String>,
}
impl GeminiScheme {
/// RequestからGeminiのリクエストボディを構築
pub(crate) fn build_request(&self, request: &Request) -> GeminiRequest {
let mut contents = Vec::new();
for message in &request.messages {
contents.push(self.convert_message(message));
}
// システムプロンプト
let system_instruction = request.system_prompt.as_ref().map(|s| GeminiContent {
role: "user".to_string(), // system_instructionではroleは"user"か省略
parts: vec![GeminiPart::Text { text: s.clone() }],
});
// ツール
let tools = if request.tools.is_empty() {
vec![]
} else {
vec![GeminiTool {
function_declarations: request.tools.iter().map(|t| self.convert_tool(t)).collect(),
}]
};
// ツール設定
let tool_config = if !request.tools.is_empty() {
Some(GeminiToolConfig {
function_calling_config: GeminiFunctionCallingConfig {
mode: Some("AUTO".to_string()),
stream_function_call_arguments: if self.stream_function_call_arguments {
Some(true)
} else {
None
},
},
})
} else {
None
};
// 生成設定
let generation_config = Some(GeminiGenerationConfig {
max_output_tokens: request.config.max_tokens,
temperature: request.config.temperature,
top_p: request.config.top_p,
stop_sequences: request.config.stop_sequences.clone(),
});
GeminiRequest {
contents,
system_instruction,
tools,
tool_config,
generation_config,
}
}
fn convert_message(&self, message: &Message) -> GeminiContent {
let role = match message.role {
Role::User => "user",
Role::Assistant => "model",
};
let parts = match &message.content {
MessageContent::Text(text) => vec![GeminiPart::Text { text: text.clone() }],
MessageContent::ToolResult {
tool_use_id,
content,
} => {
// Geminiでは関数レスポンスとしてマップ
vec![GeminiPart::FunctionResponse {
function_response: GeminiFunctionResponse {
name: tool_use_id.clone(),
response: GeminiFunctionResponseContent {
name: tool_use_id.clone(),
content: serde_json::Value::String(content.clone()),
},
},
}]
}
MessageContent::Parts(parts) => parts
.iter()
.map(|p| match p {
ContentPart::Text { text } => GeminiPart::Text { text: text.clone() },
ContentPart::ToolUse { id: _, name, input } => GeminiPart::FunctionCall {
function_call: GeminiFunctionCall {
name: name.clone(),
args: input.clone(),
},
},
ContentPart::ToolResult {
tool_use_id,
content,
} => GeminiPart::FunctionResponse {
function_response: GeminiFunctionResponse {
name: tool_use_id.clone(),
response: GeminiFunctionResponseContent {
name: tool_use_id.clone(),
content: serde_json::Value::String(content.clone()),
},
},
},
})
.collect(),
};
GeminiContent {
role: role.to_string(),
parts,
}
}
fn convert_tool(&self, tool: &ToolDefinition) -> GeminiFunctionDeclaration {
GeminiFunctionDeclaration {
name: tool.name.clone(),
description: tool.description.clone(),
parameters: tool.input_schema.clone(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_build_simple_request() {
let scheme = GeminiScheme::new();
let request = Request::new()
.system("You are a helpful assistant.")
.user("Hello!");
let gemini_req = scheme.build_request(&request);
assert!(gemini_req.system_instruction.is_some());
assert_eq!(gemini_req.contents.len(), 1);
assert_eq!(gemini_req.contents[0].role, "user");
}
#[test]
fn test_build_request_with_tool() {
let scheme = GeminiScheme::new();
let request = Request::new().user("What's the weather?").tool(
ToolDefinition::new("get_weather")
.description("Get current weather")
.input_schema(serde_json::json!({
"type": "object",
"properties": {
"location": { "type": "string" }
},
"required": ["location"]
})),
);
let gemini_req = scheme.build_request(&request);
assert_eq!(gemini_req.tools.len(), 1);
assert_eq!(gemini_req.tools[0].function_declarations.len(), 1);
assert_eq!(
gemini_req.tools[0].function_declarations[0].name,
"get_weather"
);
assert!(gemini_req.tool_config.is_some());
}
#[test]
fn test_assistant_role_is_model() {
let scheme = GeminiScheme::new();
let request = Request::new().user("Hello").assistant("Hi there!");
let gemini_req = scheme.build_request(&request);
assert_eq!(gemini_req.contents.len(), 2);
assert_eq!(gemini_req.contents[0].role, "user");
assert_eq!(gemini_req.contents[1].role, "model");
}
}

View File

@ -0,0 +1,9 @@
//! APIスキーマ定義
//!
//! 各APIスキーマごとの変換ロジック
//! - リクエスト変換: Request → プロバイダ固有JSON
//! - レスポンス変換: SSEイベント → Event
pub mod anthropic;
pub mod gemini;
pub mod openai;

View File

@ -0,0 +1,211 @@
//! OpenAI SSEイベントパース
use serde::Deserialize;
use worker_types::{Event, StopReason, UsageEvent};
use crate::llm_client::ClientError;
use super::OpenAIScheme;
/// OpenAI Streaming Chat Response Chunk
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
pub(crate) struct ChatCompletionChunk {
pub id: String,
pub object: String,
pub created: u64,
pub model: String,
pub choices: Vec<ChunkChoice>,
pub usage: Option<ChunkUsage>,
}
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
pub(crate) struct ChunkChoice {
pub index: usize,
pub delta: ChunkDelta,
pub finish_reason: Option<String>,
}
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
pub(crate) struct ChunkDelta {
pub role: Option<String>,
pub content: Option<String>,
pub tool_calls: Option<Vec<ChunkToolCall>>,
}
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
pub(crate) struct ChunkToolCall {
pub index: usize,
pub id: Option<String>,
#[serde(rename = "type")]
pub call_type: Option<String>,
pub function: Option<ChunkFunction>,
}
#[allow(dead_code)]
#[derive(Debug, Deserialize)]
pub(crate) struct ChunkFunction {
pub name: Option<String>,
pub arguments: Option<String>,
}
#[derive(Debug, Deserialize)]
pub(crate) struct ChunkUsage {
pub prompt_tokens: u64,
pub completion_tokens: u64,
pub total_tokens: u64,
}
impl OpenAIScheme {
/// SSEデータのパースとEventへの変換
///
/// OpenAI APIはBlockStartイベントを明示的に送信しない。
/// Timeline層が暗黙的なBlockStartを処理する。
pub fn parse_event(&self, data: &str) -> Result<Option<Vec<Event>>, ClientError> {
if data == "[DONE]" {
return Ok(None);
}
let chunk: ChatCompletionChunk =
serde_json::from_str(data).map_err(|e| ClientError::Api {
status: None,
code: Some("parse_error".to_string()),
message: format!("Failed to parse SSE data: {} -> {}", e, data),
})?;
let mut events = Vec::new();
// Usage handling
if let Some(usage) = chunk.usage {
events.push(Event::Usage(UsageEvent {
input_tokens: Some(usage.prompt_tokens),
output_tokens: Some(usage.completion_tokens),
total_tokens: Some(usage.total_tokens),
cache_read_input_tokens: None,
cache_creation_input_tokens: None,
}));
}
for choice in chunk.choices {
// Text Content Delta
if let Some(content) = choice.delta.content {
// OpenAI APIはBlockStartを送らないため、デルタのみを発行
// Timeline層が暗黙的なBlockStartを処理する
events.push(Event::text_delta(choice.index, content));
}
// Tool Call Delta
if let Some(tool_calls) = choice.delta.tool_calls {
for tool_call in tool_calls {
// Start of tool call (has ID)
if let Some(id) = tool_call.id {
let name = tool_call
.function
.as_ref()
.and_then(|f| f.name.clone())
.unwrap_or_default();
events.push(Event::tool_use_start(tool_call.index, id, name));
}
// Arguments delta
if let Some(function) = tool_call.function {
if let Some(args) = function.arguments {
if !args.is_empty() {
events.push(Event::tool_input_delta(tool_call.index, args));
}
}
}
}
}
// Finish Reason
if let Some(finish_reason) = choice.finish_reason {
let stop_reason = match finish_reason.as_str() {
"stop" => Some(StopReason::EndTurn),
"length" => Some(StopReason::MaxTokens),
"tool_calls" | "function_call" => Some(StopReason::ToolUse),
_ => Some(StopReason::EndTurn),
};
let is_tool_finish =
finish_reason == "tool_calls" || finish_reason == "function_call";
if is_tool_finish {
// ツール呼び出し終了
// Note: OpenAIはどのツールが終了したか明示しないため、
// Timeline層で適切に処理する必要がある
} else {
// テキスト終了
events.push(Event::text_block_stop(choice.index, stop_reason));
}
}
}
if events.is_empty() {
Ok(None)
} else {
Ok(Some(events))
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use worker_types::DeltaContent;
#[test]
fn test_parse_text_delta() {
let scheme = OpenAIScheme::new();
let data = r#"{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-4o","choices":[{"index":0,"delta":{"content":"Hello"},"finish_reason":null}]}"#;
let events = scheme.parse_event(data).unwrap().unwrap();
// OpenAIはBlockStartを発行しないため、デルタのみ
assert_eq!(events.len(), 1);
if let Event::BlockDelta(delta) = &events[0] {
assert_eq!(delta.index, 0);
if let DeltaContent::Text(text) = &delta.delta {
assert_eq!(text, "Hello");
} else {
panic!("Expected text delta");
}
} else {
panic!("Expected BlockDelta");
}
}
#[test]
fn test_parse_tool_call() {
let scheme = OpenAIScheme::new();
// Start of tool call
let data_start = r#"{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-4o","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"id":"call_abc","type":"function","function":{"name":"get_weather","arguments":""}}]},"finish_reason":null}]}"#;
let events = scheme.parse_event(data_start).unwrap().unwrap();
assert_eq!(events.len(), 1);
if let Event::BlockStart(start) = &events[0] {
assert_eq!(start.index, 0);
if let worker_types::BlockMetadata::ToolUse { id, name } = &start.metadata {
assert_eq!(id, "call_abc");
assert_eq!(name, "get_weather");
} else {
panic!("Expected ToolUse metadata");
}
}
// Tool arguments delta
let data_arg = r#"{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-4o","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"{}}"}}]},"finish_reason":null}]}"#;
let events = scheme.parse_event(data_arg).unwrap().unwrap();
assert_eq!(events.len(), 1);
if let Event::BlockDelta(delta) = &events[0] {
if let DeltaContent::InputJson(json) = &delta.delta {
assert_eq!(json, "{}}");
} else {
panic!("Expected input json delta");
}
}
}
}

View File

@ -0,0 +1,31 @@
//! OpenAI Chat Completions API スキーマ
//!
//! - リクエストJSON生成
//! - SSEイベントパース → Event変換
mod events;
mod request;
/// OpenAIスキーマ
///
/// OpenAI Chat Completions API (および互換API) のリクエスト/レスポンス変換を担当
#[derive(Debug, Clone, Default)]
pub struct OpenAIScheme {
/// モデル名 (リクエスト時に指定されるが、デフォルト値として保持も可能)
pub model: Option<String>,
/// レガシーなmax_tokensを使用するか (Ollama互換用)
pub use_legacy_max_tokens: bool,
}
impl OpenAIScheme {
/// 新しいスキーマを作成
pub fn new() -> Self {
Self::default()
}
/// レガシーなmax_tokensを使用するか設定
pub fn with_legacy_max_tokens(mut self, use_legacy: bool) -> Self {
self.use_legacy_max_tokens = use_legacy;
self
}
}

View File

@ -0,0 +1,320 @@
//! OpenAI リクエスト生成
use serde::Serialize;
use serde_json::Value;
use crate::llm_client::{
Request,
types::{ContentPart, Message, MessageContent, Role, ToolDefinition},
};
use super::OpenAIScheme;
/// OpenAI APIへのリクエストボディ
#[derive(Debug, Serialize)]
pub(crate) struct OpenAIRequest {
pub model: String,
#[serde(skip_serializing_if = "Option::is_none")]
pub max_completion_tokens: Option<u32>, // max_tokens is deprecated for newer models, generally max_completion_tokens is preferred
#[serde(skip_serializing_if = "Option::is_none")]
pub max_tokens: Option<u32>, // Legacy field for compatibility (e.g. Ollama)
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>,
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>,
#[serde(skip_serializing_if = "Vec::is_empty")]
pub stop: Vec<String>,
pub stream: bool,
#[serde(skip_serializing_if = "Option::is_none")]
pub stream_options: Option<StreamOptions>,
pub messages: Vec<OpenAIMessage>,
#[serde(skip_serializing_if = "Vec::is_empty")]
pub tools: Vec<OpenAITool>,
#[serde(skip_serializing_if = "Option::is_none")]
pub tool_choice: Option<String>, // "auto", "none", or specific
}
#[derive(Debug, Serialize)]
pub(crate) struct StreamOptions {
pub include_usage: bool,
}
/// OpenAI メッセージ
#[derive(Debug, Serialize)]
pub(crate) struct OpenAIMessage {
pub role: String,
pub content: Option<OpenAIContent>, // Optional for assistant tool calls
#[serde(skip_serializing_if = "Vec::is_empty")]
pub tool_calls: Vec<OpenAIToolCall>,
#[serde(skip_serializing_if = "Option::is_none")]
pub tool_call_id: Option<String>, // For tool_result (role: tool)
#[serde(skip_serializing_if = "Option::is_none")]
pub name: Option<String>, // Optional name
}
/// OpenAI コンテンツ
#[derive(Debug, Serialize)]
#[serde(untagged)]
pub(crate) enum OpenAIContent {
Text(String),
Parts(Vec<OpenAIContentPart>),
}
/// OpenAI コンテンツパーツ
#[allow(dead_code)]
#[derive(Debug, Serialize)]
#[serde(tag = "type")]
pub(crate) enum OpenAIContentPart {
#[serde(rename = "text")]
Text { text: String },
#[serde(rename = "image_url")]
ImageUrl { image_url: ImageUrl },
}
#[derive(Debug, Serialize)]
pub(crate) struct ImageUrl {
pub url: String,
}
/// OpenAI ツール定義
#[derive(Debug, Serialize)]
pub(crate) struct OpenAITool {
pub r#type: String,
pub function: OpenAIToolFunction,
}
#[derive(Debug, Serialize)]
pub(crate) struct OpenAIToolFunction {
pub name: String,
#[serde(skip_serializing_if = "Option::is_none")]
pub description: Option<String>,
pub parameters: Value,
}
/// OpenAI ツール呼び出し(メッセージ内)
#[derive(Debug, Serialize)]
pub(crate) struct OpenAIToolCall {
pub id: String,
pub r#type: String,
pub function: OpenAIToolCallFunction,
}
#[derive(Debug, Serialize)]
pub(crate) struct OpenAIToolCallFunction {
pub name: String,
pub arguments: String,
}
impl OpenAIScheme {
/// RequestからOpenAIのリクエストボディを構築
pub(crate) fn build_request(&self, model: &str, request: &Request) -> OpenAIRequest {
let mut messages = Vec::new();
if let Some(system) = &request.system_prompt {
messages.push(OpenAIMessage {
role: "system".to_string(),
content: Some(OpenAIContent::Text(system.clone())),
tool_calls: vec![],
tool_call_id: None,
name: None,
});
}
messages.extend(request.messages.iter().map(|m| self.convert_message(m)));
let tools = request.tools.iter().map(|t| self.convert_tool(t)).collect();
let (max_tokens, max_completion_tokens) = if self.use_legacy_max_tokens {
(request.config.max_tokens, None)
} else {
(None, request.config.max_tokens)
};
OpenAIRequest {
model: model.to_string(),
max_completion_tokens,
max_tokens,
temperature: request.config.temperature,
top_p: request.config.top_p,
stop: request.config.stop_sequences.clone(),
stream: true,
stream_options: Some(StreamOptions {
include_usage: true,
}),
messages,
tools,
tool_choice: None, // Default to auto if tools are present? Or let API decide (which is auto)
}
}
fn convert_message(&self, message: &Message) -> OpenAIMessage {
match &message.content {
MessageContent::ToolResult {
tool_use_id,
content,
} => OpenAIMessage {
role: "tool".to_string(),
content: Some(OpenAIContent::Text(content.clone())),
tool_calls: vec![],
tool_call_id: Some(tool_use_id.clone()),
name: None,
},
MessageContent::Text(text) => {
let role = match message.role {
Role::User => "user",
Role::Assistant => "assistant",
};
OpenAIMessage {
role: role.to_string(),
content: Some(OpenAIContent::Text(text.clone())),
tool_calls: vec![],
tool_call_id: None,
name: None,
}
}
MessageContent::Parts(parts) => {
let role = match message.role {
Role::User => "user",
Role::Assistant => "assistant",
};
let mut content_parts = Vec::new();
let mut tool_calls = Vec::new();
let mut is_tool_result = false;
let mut tool_result_id = None;
let mut tool_result_content = String::new();
for part in parts {
match part {
ContentPart::Text { text } => {
content_parts.push(OpenAIContentPart::Text { text: text.clone() });
}
ContentPart::ToolUse { id, name, input } => {
tool_calls.push(OpenAIToolCall {
id: id.clone(),
r#type: "function".to_string(),
function: OpenAIToolCallFunction {
name: name.clone(),
arguments: input.to_string(),
},
});
}
ContentPart::ToolResult {
tool_use_id,
content,
} => {
// OpenAI doesn't support mixed content with ToolResult in the same message easily if not careful
// But strictly speaking, a Message with ToolResult should be its own message with role "tool"
is_tool_result = true;
tool_result_id = Some(tool_use_id.clone());
tool_result_content = content.clone();
}
}
}
if is_tool_result {
OpenAIMessage {
role: "tool".to_string(),
content: Some(OpenAIContent::Text(tool_result_content)),
tool_calls: vec![],
tool_call_id: tool_result_id,
name: None,
}
} else {
let content = if content_parts.is_empty() {
None
} else if content_parts.len() == 1 {
// Simplify single text part to just Text content if preferred, or keep as Parts
if let OpenAIContentPart::Text { text } = &content_parts[0] {
Some(OpenAIContent::Text(text.clone()))
} else {
Some(OpenAIContent::Parts(content_parts))
}
} else {
Some(OpenAIContent::Parts(content_parts))
};
OpenAIMessage {
role: role.to_string(),
content,
tool_calls,
tool_call_id: None,
name: None,
}
}
}
}
}
fn convert_tool(&self, tool: &ToolDefinition) -> OpenAITool {
OpenAITool {
r#type: "function".to_string(),
function: OpenAIToolFunction {
name: tool.name.clone(),
description: tool.description.clone(),
parameters: tool.input_schema.clone(),
},
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_build_simple_request() {
let scheme = OpenAIScheme::new();
let request = Request::new().system("System prompt").user("Hello");
let body = scheme.build_request("gpt-4o", &request);
assert_eq!(body.model, "gpt-4o");
assert_eq!(body.messages.len(), 2);
assert_eq!(body.messages[0].role, "system");
assert_eq!(body.messages[1].role, "user");
// Check system content
if let Some(OpenAIContent::Text(text)) = &body.messages[0].content {
assert_eq!(text, "System prompt");
} else {
panic!("Expected text content");
}
}
#[test]
fn test_build_request_with_tool() {
let scheme = OpenAIScheme::new();
let request = Request::new()
.user("Check weather")
.tool(ToolDefinition::new("weather").description("Get weather"));
let body = scheme.build_request("gpt-4o", &request);
assert_eq!(body.tools.len(), 1);
assert_eq!(body.tools[0].function.name, "weather");
}
#[test]
fn test_build_request_legacy_max_tokens() {
let scheme = OpenAIScheme::new().with_legacy_max_tokens(true);
let request = Request::new().user("Hello").max_tokens(100);
let body = scheme.build_request("llama3", &request);
// max_tokens should be set, max_completion_tokens should be None
assert_eq!(body.max_tokens, Some(100));
assert!(body.max_completion_tokens.is_none());
}
#[test]
fn test_build_request_modern_max_tokens() {
let scheme = OpenAIScheme::new(); // Default matches modern (legacy=false)
let request = Request::new().user("Hello").max_tokens(100);
let body = scheme.build_request("gpt-4o", &request);
// max_completion_tokens should be set, max_tokens should be None
assert_eq!(body.max_completion_tokens, Some(100));
assert!(body.max_tokens.is_none());
}
}

View File

@ -0,0 +1,198 @@
//! LLMクライアント共通型定義
use serde::{Deserialize, Serialize};
/// リクエスト構造体
#[derive(Debug, Clone, Default)]
pub struct Request {
/// システムプロンプト
pub system_prompt: Option<String>,
/// メッセージ履歴
pub messages: Vec<Message>,
/// ツール定義
pub tools: Vec<ToolDefinition>,
/// リクエスト設定
pub config: RequestConfig,
}
impl Request {
/// 新しいリクエストを作成
pub fn new() -> Self {
Self::default()
}
/// システムプロンプトを設定
pub fn system(mut self, prompt: impl Into<String>) -> Self {
self.system_prompt = Some(prompt.into());
self
}
/// ユーザーメッセージを追加
pub fn user(mut self, content: impl Into<String>) -> Self {
self.messages.push(Message::user(content));
self
}
/// アシスタントメッセージを追加
pub fn assistant(mut self, content: impl Into<String>) -> Self {
self.messages.push(Message::assistant(content));
self
}
/// メッセージを追加
pub fn message(mut self, message: Message) -> Self {
self.messages.push(message);
self
}
/// ツールを追加
pub fn tool(mut self, tool: ToolDefinition) -> Self {
self.tools.push(tool);
self
}
/// 設定を適用
pub fn config(mut self, config: RequestConfig) -> Self {
self.config = config;
self
}
/// max_tokensを設定
pub fn max_tokens(mut self, max_tokens: u32) -> Self {
self.config.max_tokens = Some(max_tokens);
self
}
}
/// メッセージ
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Message {
/// ロール
pub role: Role,
/// コンテンツ
pub content: MessageContent,
}
impl Message {
/// ユーザーメッセージを作成
pub fn user(content: impl Into<String>) -> Self {
Self {
role: Role::User,
content: MessageContent::Text(content.into()),
}
}
/// アシスタントメッセージを作成
pub fn assistant(content: impl Into<String>) -> Self {
Self {
role: Role::Assistant,
content: MessageContent::Text(content.into()),
}
}
/// ツール結果メッセージを作成
pub fn tool_result(tool_use_id: impl Into<String>, content: impl Into<String>) -> Self {
Self {
role: Role::User,
content: MessageContent::ToolResult {
tool_use_id: tool_use_id.into(),
content: content.into(),
},
}
}
}
/// ロール
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
#[serde(rename_all = "lowercase")]
pub enum Role {
User,
Assistant,
}
/// メッセージコンテンツ
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(untagged)]
pub enum MessageContent {
/// テキストコンテンツ
Text(String),
/// ツール結果
ToolResult {
tool_use_id: String,
content: String,
},
/// 複合コンテンツ (テキスト + ツール使用等)
Parts(Vec<ContentPart>),
}
/// コンテンツパーツ
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "type")]
pub enum ContentPart {
/// テキスト
#[serde(rename = "text")]
Text { text: String },
/// ツール使用
#[serde(rename = "tool_use")]
ToolUse {
id: String,
name: String,
input: serde_json::Value,
},
/// ツール結果
#[serde(rename = "tool_result")]
ToolResult {
tool_use_id: String,
content: String,
},
}
/// ツール定義
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ToolDefinition {
/// ツール名
pub name: String,
/// 説明
pub description: Option<String>,
/// 入力スキーマ (JSON Schema)
pub input_schema: serde_json::Value,
}
impl ToolDefinition {
/// 新しいツール定義を作成
pub fn new(name: impl Into<String>) -> Self {
Self {
name: name.into(),
description: None,
input_schema: serde_json::json!({
"type": "object",
"properties": {}
}),
}
}
/// 説明を設定
pub fn description(mut self, desc: impl Into<String>) -> Self {
self.description = Some(desc.into());
self
}
/// 入力スキーマを設定
pub fn input_schema(mut self, schema: serde_json::Value) -> Self {
self.input_schema = schema;
self
}
}
/// リクエスト設定
#[derive(Debug, Clone, Default)]
pub struct RequestConfig {
/// 最大トークン数
pub max_tokens: Option<u32>,
/// Temperature
pub temperature: Option<f32>,
/// Top P
pub top_p: Option<f32>,
/// ストップシーケンス
pub stop_sequences: Vec<String>,
}

View File

@ -0,0 +1,240 @@
//! WorkerSubscriber統合
//!
//! WorkerSubscriberをTimeline層のHandlerとしてブリッジする実装
use std::sync::{Arc, Mutex};
use worker_types::{
ErrorEvent, ErrorKind, Handler, StatusEvent, StatusKind, TextBlockEvent, TextBlockKind,
ToolCall, ToolUseBlockEvent, ToolUseBlockKind, UsageEvent, UsageKind, WorkerSubscriber,
};
// =============================================================================
// SubscriberAdapter - WorkerSubscriberをTimelineハンドラにブリッジ
// =============================================================================
// =============================================================================
// TextBlock Handler Adapter
// =============================================================================
/// TextBlockKind用のSubscriberアダプター
pub(crate) struct TextBlockSubscriberAdapter<S: WorkerSubscriber> {
subscriber: Arc<Mutex<S>>,
}
impl<S: WorkerSubscriber> TextBlockSubscriberAdapter<S> {
pub fn new(subscriber: Arc<Mutex<S>>) -> Self {
Self { subscriber }
}
}
impl<S: WorkerSubscriber> Clone for TextBlockSubscriberAdapter<S> {
fn clone(&self) -> Self {
Self {
subscriber: self.subscriber.clone(),
}
}
}
/// TextBlockのスコープをラップ
pub struct TextBlockScopeWrapper<S: WorkerSubscriber> {
inner: S::TextBlockScope,
buffer: String, // on_text_complete用のバッファ
}
impl<S: WorkerSubscriber> Default for TextBlockScopeWrapper<S> {
fn default() -> Self {
Self {
inner: S::TextBlockScope::default(),
buffer: String::new(),
}
}
}
impl<S: WorkerSubscriber + 'static> Handler<TextBlockKind> for TextBlockSubscriberAdapter<S> {
type Scope = TextBlockScopeWrapper<S>;
fn on_event(&mut self, scope: &mut Self::Scope, event: &TextBlockEvent) {
// Deltaの場合はバッファに蓄積
if let TextBlockEvent::Delta(text) = event {
scope.buffer.push_str(text);
}
// SubscriberのTextBlockイベントハンドラを呼び出し
if let Ok(mut subscriber) = self.subscriber.lock() {
subscriber.on_text_block(&mut scope.inner, event);
// Stopの場合はon_text_completeも呼び出し
if matches!(event, TextBlockEvent::Stop(_)) {
subscriber.on_text_complete(&scope.buffer);
}
}
}
}
// =============================================================================
// ToolUseBlock Handler Adapter
// =============================================================================
/// ToolUseBlockKind用のSubscriberアダプター
pub(crate) struct ToolUseBlockSubscriberAdapter<S: WorkerSubscriber> {
subscriber: Arc<Mutex<S>>,
}
impl<S: WorkerSubscriber> ToolUseBlockSubscriberAdapter<S> {
pub fn new(subscriber: Arc<Mutex<S>>) -> Self {
Self { subscriber }
}
}
impl<S: WorkerSubscriber> Clone for ToolUseBlockSubscriberAdapter<S> {
fn clone(&self) -> Self {
Self {
subscriber: self.subscriber.clone(),
}
}
}
/// ToolUseBlockのスコープをラップ
pub struct ToolUseBlockScopeWrapper<S: WorkerSubscriber> {
inner: S::ToolUseBlockScope,
id: String,
name: String,
input_json: String, // JSON蓄積用
}
impl<S: WorkerSubscriber> Default for ToolUseBlockScopeWrapper<S> {
fn default() -> Self {
Self {
inner: S::ToolUseBlockScope::default(),
id: String::new(),
name: String::new(),
input_json: String::new(),
}
}
}
impl<S: WorkerSubscriber + 'static> Handler<ToolUseBlockKind> for ToolUseBlockSubscriberAdapter<S> {
type Scope = ToolUseBlockScopeWrapper<S>;
fn on_event(&mut self, scope: &mut Self::Scope, event: &ToolUseBlockEvent) {
// Start時にメタデータを保存
if let ToolUseBlockEvent::Start(start) = event {
scope.id = start.id.clone();
scope.name = start.name.clone();
}
// InputJsonDeltaの場合はバッファに蓄積
if let ToolUseBlockEvent::InputJsonDelta(json) = event {
scope.input_json.push_str(json);
}
// SubscriberのToolUseBlockイベントハンドラを呼び出し
if let Ok(mut subscriber) = self.subscriber.lock() {
subscriber.on_tool_use_block(&mut scope.inner, event);
// Stopの場合はon_tool_call_completeも呼び出し
if matches!(event, ToolUseBlockEvent::Stop(_)) {
let input: serde_json::Value =
serde_json::from_str(&scope.input_json).unwrap_or_default();
let tool_call = ToolCall {
id: scope.id.clone(),
name: scope.name.clone(),
input,
};
subscriber.on_tool_call_complete(&tool_call);
}
}
}
}
// =============================================================================
// Meta Event Handler Adapters
// =============================================================================
/// UsageKind用のSubscriberアダプター
pub(crate) struct UsageSubscriberAdapter<S: WorkerSubscriber> {
subscriber: Arc<Mutex<S>>,
}
impl<S: WorkerSubscriber> UsageSubscriberAdapter<S> {
pub fn new(subscriber: Arc<Mutex<S>>) -> Self {
Self { subscriber }
}
}
impl<S: WorkerSubscriber> Clone for UsageSubscriberAdapter<S> {
fn clone(&self) -> Self {
Self {
subscriber: self.subscriber.clone(),
}
}
}
impl<S: WorkerSubscriber + 'static> Handler<UsageKind> for UsageSubscriberAdapter<S> {
type Scope = ();
fn on_event(&mut self, _scope: &mut Self::Scope, event: &UsageEvent) {
if let Ok(mut subscriber) = self.subscriber.lock() {
subscriber.on_usage(event);
}
}
}
/// StatusKind用のSubscriberアダプター
pub(crate) struct StatusSubscriberAdapter<S: WorkerSubscriber> {
subscriber: Arc<Mutex<S>>,
}
impl<S: WorkerSubscriber> StatusSubscriberAdapter<S> {
pub fn new(subscriber: Arc<Mutex<S>>) -> Self {
Self { subscriber }
}
}
impl<S: WorkerSubscriber> Clone for StatusSubscriberAdapter<S> {
fn clone(&self) -> Self {
Self {
subscriber: self.subscriber.clone(),
}
}
}
impl<S: WorkerSubscriber + 'static> Handler<StatusKind> for StatusSubscriberAdapter<S> {
type Scope = ();
fn on_event(&mut self, _scope: &mut Self::Scope, event: &StatusEvent) {
if let Ok(mut subscriber) = self.subscriber.lock() {
subscriber.on_status(event);
}
}
}
/// ErrorKind用のSubscriberアダプター
pub(crate) struct ErrorSubscriberAdapter<S: WorkerSubscriber> {
subscriber: Arc<Mutex<S>>,
}
impl<S: WorkerSubscriber> ErrorSubscriberAdapter<S> {
pub fn new(subscriber: Arc<Mutex<S>>) -> Self {
Self { subscriber }
}
}
impl<S: WorkerSubscriber> Clone for ErrorSubscriberAdapter<S> {
fn clone(&self) -> Self {
Self {
subscriber: self.subscriber.clone(),
}
}
}
impl<S: WorkerSubscriber + 'static> Handler<ErrorKind> for ErrorSubscriberAdapter<S> {
type Scope = ();
fn on_event(&mut self, _scope: &mut Self::Scope, event: &ErrorEvent) {
if let Ok(mut subscriber) = self.subscriber.lock() {
subscriber.on_error(event);
}
}
}

View File

@ -0,0 +1,33 @@
//! Timeline層
//!
//! LLMからのイベントストリームを受信し、登録されたHandlerにディスパッチします。
//!
//! # 主要コンポーネント
//!
//! - [`Timeline`] - イベントストリームの管理とディスパッチ
//! - [`Handler`] - イベントを処理するトレイト
//! - [`TextBlockCollector`] - テキストブロックを収集するHandler
//! - [`ToolCallCollector`] - ツール呼び出しを収集するHandler
mod text_block_collector;
mod timeline;
mod tool_call_collector;
// 公開API
pub use text_block_collector::TextBlockCollector;
pub use timeline::{ErasedHandler, HandlerWrapper, Timeline};
pub use tool_call_collector::ToolCallCollector;
// worker-typesからのre-export
pub use worker_types::{
// Core traits
Handler, Kind,
// Block Kinds
TextBlockKind, ThinkingBlockKind, ToolUseBlockKind,
// Block Events
TextBlockEvent, TextBlockStart, TextBlockStop,
ThinkingBlockEvent, ThinkingBlockStart, ThinkingBlockStop,
ToolUseBlockEvent, ToolUseBlockStart, ToolUseBlockStop,
// Meta Kinds
ErrorKind, PingKind, StatusKind, UsageKind,
};

View File

@ -0,0 +1,131 @@
//! TextBlockCollector - テキストブロック収集用ハンドラ
//!
//! TimelineのTextBlockHandler として登録され、
//! ストリーム中のテキストブロックを収集する。
use std::sync::{Arc, Mutex};
use worker_types::{Handler, TextBlockEvent, TextBlockKind};
/// TextBlockから収集したテキスト情報を保持
#[derive(Debug, Default)]
pub struct TextCollectorState {
/// 蓄積中のテキスト
buffer: String,
}
/// TextBlockCollector - テキストブロックハンドラ
///
/// Timelineに登録してTextBlockイベントを受信し、
/// 完了したテキストブロックを収集する。
#[derive(Clone)]
pub struct TextBlockCollector {
/// 収集されたテキストブロック
collected: Arc<Mutex<Vec<String>>>,
}
impl TextBlockCollector {
/// 新しいTextBlockCollectorを作成
pub fn new() -> Self {
Self {
collected: Arc::new(Mutex::new(Vec::new())),
}
}
/// 収集されたテキストを取得してクリア
pub fn take_collected(&self) -> Vec<String> {
let mut guard = self.collected.lock().unwrap();
std::mem::take(&mut *guard)
}
/// 収集されたテキストの参照を取得
pub fn collected(&self) -> Vec<String> {
self.collected.lock().unwrap().clone()
}
/// 収集されたテキストがあるかどうか
pub fn has_content(&self) -> bool {
!self.collected.lock().unwrap().is_empty()
}
/// 収集をクリア
pub fn clear(&self) {
self.collected.lock().unwrap().clear();
}
}
impl Default for TextBlockCollector {
fn default() -> Self {
Self::new()
}
}
impl Handler<TextBlockKind> for TextBlockCollector {
type Scope = TextCollectorState;
fn on_event(&mut self, scope: &mut Self::Scope, event: &TextBlockEvent) {
match event {
TextBlockEvent::Start(_) => {
scope.buffer.clear();
}
TextBlockEvent::Delta(text) => {
scope.buffer.push_str(text);
}
TextBlockEvent::Stop(_) => {
// ブロック完了時にテキストを確定
if !scope.buffer.is_empty() {
let text = std::mem::take(&mut scope.buffer);
self.collected.lock().unwrap().push(text);
}
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::timeline::Timeline;
use worker_types::Event;
/// TextBlockCollectorが単一のテキストブロックを正しく収集することを確認
#[test]
fn test_collect_single_text_block() {
let collector = TextBlockCollector::new();
let mut timeline = Timeline::new();
timeline.on_text_block(collector.clone());
// テキストブロックのイベントシーケンスをディスパッチ
timeline.dispatch(&Event::text_block_start(0));
timeline.dispatch(&Event::text_delta(0, "Hello, "));
timeline.dispatch(&Event::text_delta(0, "World!"));
timeline.dispatch(&Event::text_block_stop(0, None));
// 収集されたテキストを確認
let texts = collector.take_collected();
assert_eq!(texts.len(), 1);
assert_eq!(texts[0], "Hello, World!");
}
/// TextBlockCollectorが複数のテキストブロックを正しく収集することを確認
#[test]
fn test_collect_multiple_text_blocks() {
let collector = TextBlockCollector::new();
let mut timeline = Timeline::new();
timeline.on_text_block(collector.clone());
// 1つ目のテキストブロック
timeline.dispatch(&Event::text_block_start(0));
timeline.dispatch(&Event::text_delta(0, "First"));
timeline.dispatch(&Event::text_block_stop(0, None));
// 2つ目のテキストブロック
timeline.dispatch(&Event::text_block_start(1));
timeline.dispatch(&Event::text_delta(1, "Second"));
timeline.dispatch(&Event::text_block_stop(1, None));
let texts = collector.take_collected();
assert_eq!(texts.len(), 2);
assert_eq!(texts[0], "First");
assert_eq!(texts[1], "Second");
}
}

View File

@ -0,0 +1,621 @@
//! Timeline層
//!
//! LLMからのイベントストリームを受信し、登録されたHandlerにディスパッチします。
//! 通常はWorker経由で使用しますが、直接使用することも可能です。
use std::marker::PhantomData;
use worker_types::*;
// =============================================================================
// Type-erased Handler
// =============================================================================
/// 型消去された`Handler` trait
///
/// 各Handlerは独自のScope型を持つため、Timelineで保持するには型消去が必要です。
/// 通常は直接使用せず、`Timeline::on_text_block()`などのメソッド経由で
/// 自動的にラップされます。
pub trait ErasedHandler<K: Kind>: Send {
/// イベントをディスパッチ
fn dispatch(&mut self, event: &K::Event);
/// スコープを開始Block開始時
fn start_scope(&mut self);
/// スコープを終了Block終了時
fn end_scope(&mut self);
}
/// `Handler<K>`を`ErasedHandler<K>`として扱うためのラッパー
pub struct HandlerWrapper<H, K>
where
H: Handler<K>,
K: Kind,
{
handler: H,
scope: Option<H::Scope>,
// fn() -> K は常にSend+Syncなので、Kの制約に関係なくSendを満たせる
_kind: PhantomData<fn() -> K>,
}
impl<H, K> HandlerWrapper<H, K>
where
H: Handler<K>,
K: Kind,
{
pub fn new(handler: H) -> Self {
Self {
handler,
scope: None,
_kind: PhantomData,
}
}
}
impl<H, K> ErasedHandler<K> for HandlerWrapper<H, K>
where
H: Handler<K> + Send,
K: Kind,
H::Scope: Send,
{
fn dispatch(&mut self, event: &K::Event) {
if let Some(scope) = &mut self.scope {
self.handler.on_event(scope, event);
}
}
fn start_scope(&mut self) {
self.scope = Some(H::Scope::default());
}
fn end_scope(&mut self) {
self.scope = None;
}
}
// =============================================================================
// Block Handler Registry
// =============================================================================
/// ブロックハンドラーの型消去trait
trait ErasedBlockHandler: Send {
fn dispatch_start(&mut self, start: &BlockStart);
fn dispatch_delta(&mut self, delta: &BlockDelta);
fn dispatch_stop(&mut self, stop: &BlockStop);
fn dispatch_abort(&mut self, abort: &BlockAbort);
fn start_scope(&mut self);
fn end_scope(&mut self);
/// スコープがアクティブかどうか
fn has_scope(&self) -> bool;
}
/// TextBlockKind用のラッパー
struct TextBlockHandlerWrapper<H>
where
H: Handler<TextBlockKind>,
{
handler: H,
scope: Option<H::Scope>,
}
impl<H> TextBlockHandlerWrapper<H>
where
H: Handler<TextBlockKind>,
{
fn new(handler: H) -> Self {
Self {
handler,
scope: None,
}
}
}
impl<H> ErasedBlockHandler for TextBlockHandlerWrapper<H>
where
H: Handler<TextBlockKind> + Send,
H::Scope: Send,
{
fn dispatch_start(&mut self, start: &BlockStart) {
if let Some(scope) = &mut self.scope {
self.handler.on_event(
scope,
&TextBlockEvent::Start(TextBlockStart { index: start.index }),
);
}
}
fn dispatch_delta(&mut self, delta: &BlockDelta) {
if let Some(scope) = &mut self.scope {
if let DeltaContent::Text(text) = &delta.delta {
self.handler
.on_event(scope, &TextBlockEvent::Delta(text.clone()));
}
}
}
fn dispatch_stop(&mut self, stop: &BlockStop) {
if let Some(scope) = &mut self.scope {
self.handler.on_event(
scope,
&TextBlockEvent::Stop(TextBlockStop {
index: stop.index,
stop_reason: stop.stop_reason.clone(),
}),
);
}
}
fn dispatch_abort(&mut self, _abort: &BlockAbort) {
// TextBlockはabortを特別扱いしないスコープ終了のみ
}
fn start_scope(&mut self) {
self.scope = Some(H::Scope::default());
}
fn end_scope(&mut self) {
self.scope = None;
}
fn has_scope(&self) -> bool {
self.scope.is_some()
}
}
/// ThinkingBlockKind用のラッパー
struct ThinkingBlockHandlerWrapper<H>
where
H: Handler<ThinkingBlockKind>,
{
handler: H,
scope: Option<H::Scope>,
}
impl<H> ThinkingBlockHandlerWrapper<H>
where
H: Handler<ThinkingBlockKind>,
{
fn new(handler: H) -> Self {
Self {
handler,
scope: None,
}
}
}
impl<H> ErasedBlockHandler for ThinkingBlockHandlerWrapper<H>
where
H: Handler<ThinkingBlockKind> + Send,
H::Scope: Send,
{
fn dispatch_start(&mut self, start: &BlockStart) {
if let Some(scope) = &mut self.scope {
self.handler.on_event(
scope,
&ThinkingBlockEvent::Start(ThinkingBlockStart { index: start.index }),
);
}
}
fn dispatch_delta(&mut self, delta: &BlockDelta) {
if let Some(scope) = &mut self.scope {
if let DeltaContent::Thinking(text) = &delta.delta {
self.handler
.on_event(scope, &ThinkingBlockEvent::Delta(text.clone()));
}
}
}
fn dispatch_stop(&mut self, stop: &BlockStop) {
if let Some(scope) = &mut self.scope {
self.handler.on_event(
scope,
&ThinkingBlockEvent::Stop(ThinkingBlockStop { index: stop.index }),
);
}
}
fn dispatch_abort(&mut self, _abort: &BlockAbort) {}
fn start_scope(&mut self) {
self.scope = Some(H::Scope::default());
}
fn end_scope(&mut self) {
self.scope = None;
}
fn has_scope(&self) -> bool {
self.scope.is_some()
}
}
/// ToolUseBlockKind用のラッパー
struct ToolUseBlockHandlerWrapper<H>
where
H: Handler<ToolUseBlockKind>,
{
handler: H,
scope: Option<H::Scope>,
current_tool: Option<(String, String)>, // (id, name)
}
impl<H> ToolUseBlockHandlerWrapper<H>
where
H: Handler<ToolUseBlockKind>,
{
fn new(handler: H) -> Self {
Self {
handler,
scope: None,
current_tool: None,
}
}
}
impl<H> ErasedBlockHandler for ToolUseBlockHandlerWrapper<H>
where
H: Handler<ToolUseBlockKind> + Send,
H::Scope: Send,
{
fn dispatch_start(&mut self, start: &BlockStart) {
if let Some(scope) = &mut self.scope {
if let BlockMetadata::ToolUse { id, name } = &start.metadata {
self.current_tool = Some((id.clone(), name.clone()));
self.handler.on_event(
scope,
&ToolUseBlockEvent::Start(ToolUseBlockStart {
index: start.index,
id: id.clone(),
name: name.clone(),
}),
);
}
}
}
fn dispatch_delta(&mut self, delta: &BlockDelta) {
if let Some(scope) = &mut self.scope {
if let DeltaContent::InputJson(json) = &delta.delta {
self.handler
.on_event(scope, &ToolUseBlockEvent::InputJsonDelta(json.clone()));
}
}
}
fn dispatch_stop(&mut self, stop: &BlockStop) {
if let Some(scope) = &mut self.scope {
if let Some((id, name)) = self.current_tool.take() {
self.handler.on_event(
scope,
&ToolUseBlockEvent::Stop(ToolUseBlockStop {
index: stop.index,
id,
name,
}),
);
}
}
}
fn dispatch_abort(&mut self, _abort: &BlockAbort) {
self.current_tool = None;
}
fn start_scope(&mut self) {
self.scope = Some(H::Scope::default());
}
fn end_scope(&mut self) {
self.scope = None;
self.current_tool = None;
}
fn has_scope(&self) -> bool {
self.scope.is_some()
}
}
// =============================================================================
// Timeline
// =============================================================================
/// イベントストリームの管理とハンドラへのディスパッチ
///
/// LLMからのイベントを受信し、登録されたハンドラに振り分けます。
/// ブロック系イベントはスコープ管理付きで処理されます。
///
/// # Examples
///
/// ```ignore
/// use worker::{Timeline, Handler, TextBlockKind, TextBlockEvent};
///
/// struct MyHandler;
/// impl Handler<TextBlockKind> for MyHandler {
/// type Scope = String;
/// fn on_event(&mut self, buffer: &mut String, event: &TextBlockEvent) {
/// if let TextBlockEvent::Delta(text) = event {
/// buffer.push_str(text);
/// }
/// }
/// }
///
/// let mut timeline = Timeline::new();
/// timeline.on_text_block(MyHandler);
/// ```
///
/// # サポートするイベント種別
///
/// - **メタ系**: Usage, Ping, Status, Error
/// - **ブロック系**: TextBlock, ThinkingBlock, ToolUseBlock
pub struct Timeline {
// Meta系ハンドラー
usage_handlers: Vec<Box<dyn ErasedHandler<UsageKind>>>,
ping_handlers: Vec<Box<dyn ErasedHandler<PingKind>>>,
status_handlers: Vec<Box<dyn ErasedHandler<StatusKind>>>,
error_handlers: Vec<Box<dyn ErasedHandler<ErrorKind>>>,
// Block系ハンドラーBlockTypeごとにグループ化
text_block_handlers: Vec<Box<dyn ErasedBlockHandler>>,
thinking_block_handlers: Vec<Box<dyn ErasedBlockHandler>>,
tool_use_block_handlers: Vec<Box<dyn ErasedBlockHandler>>,
// 現在アクティブなブロック
current_block: Option<BlockType>,
}
impl Default for Timeline {
fn default() -> Self {
Self::new()
}
}
impl Timeline {
pub fn new() -> Self {
Self {
usage_handlers: Vec::new(),
ping_handlers: Vec::new(),
status_handlers: Vec::new(),
error_handlers: Vec::new(),
text_block_handlers: Vec::new(),
thinking_block_handlers: Vec::new(),
tool_use_block_handlers: Vec::new(),
current_block: None,
}
}
// =========================================================================
// Handler Registration
// =========================================================================
/// UsageKind用のHandlerを登録
pub fn on_usage<H>(&mut self, handler: H) -> &mut Self
where
H: Handler<UsageKind> + Send + 'static,
H::Scope: Send,
{
// Meta系はデフォルトでスコープを開始しておく
let mut wrapper = HandlerWrapper::new(handler);
wrapper.start_scope();
self.usage_handlers.push(Box::new(wrapper));
self
}
/// PingKind用のHandlerを登録
pub fn on_ping<H>(&mut self, handler: H) -> &mut Self
where
H: Handler<PingKind> + Send + 'static,
H::Scope: Send,
{
let mut wrapper = HandlerWrapper::new(handler);
wrapper.start_scope();
self.ping_handlers.push(Box::new(wrapper));
self
}
/// StatusKind用のHandlerを登録
pub fn on_status<H>(&mut self, handler: H) -> &mut Self
where
H: Handler<StatusKind> + Send + 'static,
H::Scope: Send,
{
let mut wrapper = HandlerWrapper::new(handler);
wrapper.start_scope();
self.status_handlers.push(Box::new(wrapper));
self
}
/// ErrorKind用のHandlerを登録
pub fn on_error<H>(&mut self, handler: H) -> &mut Self
where
H: Handler<ErrorKind> + Send + 'static,
H::Scope: Send,
{
let mut wrapper = HandlerWrapper::new(handler);
wrapper.start_scope();
self.error_handlers.push(Box::new(wrapper));
self
}
/// TextBlockKind用のHandlerを登録
pub fn on_text_block<H>(&mut self, handler: H) -> &mut Self
where
H: Handler<TextBlockKind> + Send + 'static,
H::Scope: Send,
{
self.text_block_handlers
.push(Box::new(TextBlockHandlerWrapper::new(handler)));
self
}
/// ThinkingBlockKind用のHandlerを登録
pub fn on_thinking_block<H>(&mut self, handler: H) -> &mut Self
where
H: Handler<ThinkingBlockKind> + Send + 'static,
H::Scope: Send,
{
self.thinking_block_handlers
.push(Box::new(ThinkingBlockHandlerWrapper::new(handler)));
self
}
/// ToolUseBlockKind用のHandlerを登録
pub fn on_tool_use_block<H>(&mut self, handler: H) -> &mut Self
where
H: Handler<ToolUseBlockKind> + Send + 'static,
H::Scope: Send,
{
self.tool_use_block_handlers
.push(Box::new(ToolUseBlockHandlerWrapper::new(handler)));
self
}
// =========================================================================
// Event Dispatch
// =========================================================================
/// メインのディスパッチエントリポイント
pub fn dispatch(&mut self, event: &Event) {
match event {
// Meta系: 即時ディスパッチ(登録順)
Event::Usage(u) => self.dispatch_usage(u),
Event::Ping(p) => self.dispatch_ping(p),
Event::Status(s) => self.dispatch_status(s),
Event::Error(e) => self.dispatch_error(e),
// Block系: スコープ管理しながらディスパッチ
Event::BlockStart(s) => self.handle_block_start(s),
Event::BlockDelta(d) => self.handle_block_delta(d),
Event::BlockStop(s) => self.handle_block_stop(s),
Event::BlockAbort(a) => self.handle_block_abort(a),
}
}
fn dispatch_usage(&mut self, event: &UsageEvent) {
for handler in &mut self.usage_handlers {
handler.dispatch(event);
}
}
fn dispatch_ping(&mut self, event: &PingEvent) {
for handler in &mut self.ping_handlers {
handler.dispatch(event);
}
}
fn dispatch_status(&mut self, event: &StatusEvent) {
for handler in &mut self.status_handlers {
handler.dispatch(event);
}
}
fn dispatch_error(&mut self, event: &ErrorEvent) {
for handler in &mut self.error_handlers {
handler.dispatch(event);
}
}
fn handle_block_start(&mut self, start: &BlockStart) {
self.current_block = Some(start.block_type);
let handlers = self.get_block_handlers_mut(start.block_type);
for handler in handlers {
handler.start_scope();
handler.dispatch_start(start);
}
}
fn handle_block_delta(&mut self, delta: &BlockDelta) {
let block_type = delta.delta.block_type();
// OpenAIなどのプロバイダはBlockStartを送らない場合があるため、
// Deltaが来たときにスコープがなければ暗黙的に開始する
if self.current_block.is_none() {
self.current_block = Some(block_type);
}
let handlers = self.get_block_handlers_mut(block_type);
for handler in handlers {
// スコープがなければ暗黙的に開始
if !handler.has_scope() {
handler.start_scope();
}
handler.dispatch_delta(delta);
}
}
fn handle_block_stop(&mut self, stop: &BlockStop) {
let handlers = self.get_block_handlers_mut(stop.block_type);
for handler in handlers {
handler.dispatch_stop(stop);
handler.end_scope();
}
self.current_block = None;
}
fn handle_block_abort(&mut self, abort: &BlockAbort) {
let handlers = self.get_block_handlers_mut(abort.block_type);
for handler in handlers {
handler.dispatch_abort(abort);
handler.end_scope();
}
self.current_block = None;
}
fn get_block_handlers_mut(
&mut self,
block_type: BlockType,
) -> &mut Vec<Box<dyn ErasedBlockHandler>> {
match block_type {
BlockType::Text => &mut self.text_block_handlers,
BlockType::Thinking => &mut self.thinking_block_handlers,
BlockType::ToolUse => &mut self.tool_use_block_handlers,
BlockType::ToolResult => &mut self.text_block_handlers, // ToolResultはTextとして扱う
}
}
/// 現在アクティブなブロックタイプを取得
pub fn current_block(&self) -> Option<BlockType> {
self.current_block
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::sync::{Arc, Mutex};
#[test]
fn test_timeline_creation() {
let timeline = Timeline::new();
assert!(timeline.current_block().is_none());
}
#[test]
fn test_meta_event_dispatch() {
// シンプルなテスト用構造体
struct TestUsageHandler {
calls: Arc<Mutex<Vec<UsageEvent>>>,
}
impl Handler<UsageKind> for TestUsageHandler {
type Scope = ();
fn on_event(&mut self, _scope: &mut (), event: &UsageEvent) {
self.calls.lock().unwrap().push(event.clone());
}
}
let calls = Arc::new(Mutex::new(Vec::new()));
let handler = TestUsageHandler {
calls: calls.clone(),
};
let mut timeline = Timeline::new();
timeline.on_usage(handler);
timeline.dispatch(&Event::usage(100, 50));
let recorded = calls.lock().unwrap();
assert_eq!(recorded.len(), 1);
assert_eq!(recorded[0].input_tokens, Some(100));
}
}

View File

@ -0,0 +1,144 @@
//! ToolCallCollector - ツール呼び出し収集用ハンドラ
//!
//! TimelineのToolUseBlockHandler として登録され、
//! ストリーム中のToolUseブロックを収集する。
use std::sync::{Arc, Mutex};
use worker_types::{Handler, ToolCall, ToolUseBlockEvent, ToolUseBlockKind};
/// ToolUseブロックから収集したツール呼び出し情報を保持
///
/// ToolCallCollectorのHandler実装で使用するスコープ型
#[derive(Debug, Default)]
pub struct CollectorState {
/// 現在のツール呼び出し情報 (ブロック進行中)
current_id: Option<String>,
current_name: Option<String>,
/// 蓄積中のJSON入力
input_json_buffer: String,
}
/// ToolCallCollector - ToolUseブロックハンドラ
///
/// Timelineに登録してToolUseブロックイベントを受信し、
/// 完了したToolCallを収集する。
#[derive(Clone)]
pub struct ToolCallCollector {
/// 収集されたToolCall
collected: Arc<Mutex<Vec<ToolCall>>>,
}
impl ToolCallCollector {
/// 新しいToolCallCollectorを作成
pub fn new() -> Self {
Self {
collected: Arc::new(Mutex::new(Vec::new())),
}
}
/// 収集されたToolCallを取得してクリア
pub fn take_collected(&self) -> Vec<ToolCall> {
let mut guard = self.collected.lock().unwrap();
std::mem::take(&mut *guard)
}
/// 収集されたToolCallの参照を取得
pub fn collected(&self) -> Vec<ToolCall> {
self.collected.lock().unwrap().clone()
}
/// 収集されたToolCallがあるかどうか
pub fn has_pending_calls(&self) -> bool {
!self.collected.lock().unwrap().is_empty()
}
/// 収集をクリア
pub fn clear(&self) {
self.collected.lock().unwrap().clear();
}
}
impl Default for ToolCallCollector {
fn default() -> Self {
Self::new()
}
}
impl Handler<ToolUseBlockKind> for ToolCallCollector {
type Scope = CollectorState;
fn on_event(&mut self, scope: &mut Self::Scope, event: &ToolUseBlockEvent) {
match event {
ToolUseBlockEvent::Start(start) => {
scope.current_id = Some(start.id.clone());
scope.current_name = Some(start.name.clone());
scope.input_json_buffer.clear();
}
ToolUseBlockEvent::InputJsonDelta(delta) => {
scope.input_json_buffer.push_str(delta);
}
ToolUseBlockEvent::Stop(_stop) => {
// ブロック完了時にToolCallを確定
if let (Some(id), Some(name)) = (scope.current_id.take(), scope.current_name.take())
{
let input = serde_json::from_str(&scope.input_json_buffer)
.unwrap_or(serde_json::Value::Null);
let tool_call = ToolCall { id, name, input };
self.collected.lock().unwrap().push(tool_call);
}
scope.input_json_buffer.clear();
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::timeline::Timeline;
use worker_types::Event;
#[test]
fn test_collect_single_tool_call() {
let collector = ToolCallCollector::new();
let mut timeline = Timeline::new();
timeline.on_tool_use_block(collector.clone());
// ToolUseブロックのイベントシーケンスをディスパッチ
timeline.dispatch(&Event::tool_use_start(0, "tool_123", "get_weather"));
timeline.dispatch(&Event::tool_input_delta(0, r#"{"city":"#));
timeline.dispatch(&Event::tool_input_delta(0, r#""Tokyo"}"#));
timeline.dispatch(&Event::tool_use_stop(0));
// 収集されたToolCallを確認
let calls = collector.take_collected();
assert_eq!(calls.len(), 1);
assert_eq!(calls[0].id, "tool_123");
assert_eq!(calls[0].name, "get_weather");
assert_eq!(calls[0].input["city"], "Tokyo");
}
#[test]
fn test_collect_multiple_tool_calls() {
let collector = ToolCallCollector::new();
let mut timeline = Timeline::new();
timeline.on_tool_use_block(collector.clone());
// 1つ目のToolCall
timeline.dispatch(&Event::tool_use_start(0, "call_1", "tool_a"));
timeline.dispatch(&Event::tool_input_delta(0, r#"{"a":1}"#));
timeline.dispatch(&Event::tool_use_stop(0));
// 2つ目のToolCall
timeline.dispatch(&Event::tool_use_start(1, "call_2", "tool_b"));
timeline.dispatch(&Event::tool_input_delta(1, r#"{"b":2}"#));
timeline.dispatch(&Event::tool_use_stop(1));
let calls = collector.take_collected();
assert_eq!(calls.len(), 2);
assert_eq!(calls[0].name, "tool_a");
assert_eq!(calls[1].name, "tool_b");
}
}

789
worker/src/worker.rs Normal file
View File

@ -0,0 +1,789 @@
use std::collections::HashMap;
use std::marker::PhantomData;
use std::sync::{Arc, Mutex};
use futures::StreamExt;
use tracing::{debug, info, trace, warn};
use crate::timeline::{TextBlockCollector, Timeline, ToolCallCollector};
use crate::llm_client::{ClientError, LlmClient, Request, ToolDefinition};
use crate::subscriber_adapter::{
ErrorSubscriberAdapter, StatusSubscriberAdapter, TextBlockSubscriberAdapter,
ToolUseBlockSubscriberAdapter, UsageSubscriberAdapter,
};
use worker_types::{
ContentPart, ControlFlow, HookError, Locked, Message, MessageContent, Mutable, Tool, ToolCall,
ToolError, ToolResult, TurnResult, WorkerHook, WorkerState, WorkerSubscriber,
};
// =============================================================================
// Worker Error
// =============================================================================
/// Workerエラー
#[derive(Debug, thiserror::Error)]
pub enum WorkerError {
/// クライアントエラー
#[error("Client error: {0}")]
Client(#[from] ClientError),
/// ツールエラー
#[error("Tool error: {0}")]
Tool(#[from] ToolError),
/// Hookエラー
#[error("Hook error: {0}")]
Hook(#[from] HookError),
/// 処理が中断された
#[error("Aborted: {0}")]
Aborted(String),
}
// =============================================================================
// Worker Config
// =============================================================================
/// Worker設定
#[derive(Debug, Clone, Default)]
pub struct WorkerConfig {
// 将来の拡張用(現在は空)
_private: (),
}
// =============================================================================
// ターン制御用コールバック保持
// =============================================================================
/// ターンイベントを通知するためのコールバック (型消去)
trait TurnNotifier: Send {
fn on_turn_start(&self, turn: usize);
fn on_turn_end(&self, turn: usize);
}
struct SubscriberTurnNotifier<S: WorkerSubscriber + 'static> {
subscriber: Arc<Mutex<S>>,
}
impl<S: WorkerSubscriber + 'static> TurnNotifier for SubscriberTurnNotifier<S> {
fn on_turn_start(&self, turn: usize) {
if let Ok(mut s) = self.subscriber.lock() {
s.on_turn_start(turn);
}
}
fn on_turn_end(&self, turn: usize) {
if let Ok(mut s) = self.subscriber.lock() {
s.on_turn_end(turn);
}
}
}
// =============================================================================
// Worker
// =============================================================================
/// LLMとの対話を管理する中心コンポーネント
///
/// ユーザーからの入力を受け取り、LLMにリクエストを送信し、
/// ツール呼び出しがあれば自動的に実行してターンを進行させます。
///
/// # 状態遷移Type-state
///
/// - [`Mutable`]: 初期状態。システムプロンプトや履歴を自由に編集可能。
/// - [`Locked`]: キャッシュ保護状態。`lock()`で遷移。前方コンテキストは不変。
///
/// # Examples
///
/// ```ignore
/// use worker::{Worker, Message};
///
/// // Workerを作成してツールを登録
/// let mut worker = Worker::new(client)
/// .system_prompt("You are a helpful assistant.");
/// worker.register_tool(my_tool);
///
/// // 対話を実行
/// let history = worker.run("Hello!").await?;
/// ```
///
/// # キャッシュ保護が必要な場合
///
/// ```ignore
/// let mut worker = Worker::new(client)
/// .system_prompt("...");
///
/// // 履歴を設定後、ロックしてキャッシュを保護
/// let mut locked = worker.lock();
/// locked.run("user input").await?;
/// ```
pub struct Worker<C: LlmClient, S: WorkerState = Mutable> {
/// LLMクライアント
client: C,
/// イベントタイムライン
timeline: Timeline,
/// テキストブロックコレクターTimeline用ハンドラ
text_block_collector: TextBlockCollector,
/// ツールコールコレクターTimeline用ハンドラ
tool_call_collector: ToolCallCollector,
/// 登録されたツール
tools: HashMap<String, Arc<dyn Tool>>,
/// 登録されたHook
hooks: Vec<Box<dyn WorkerHook>>,
/// システムプロンプト
system_prompt: Option<String>,
/// メッセージ履歴Workerが所有
history: Vec<Message>,
/// ロック時点での履歴長Locked状態でのみ意味を持つ
locked_prefix_len: usize,
/// ターンカウント
turn_count: usize,
/// ターン通知用のコールバック
turn_notifiers: Vec<Box<dyn TurnNotifier>>,
/// 状態マーカー
_state: PhantomData<S>,
}
// =============================================================================
// 共通実装(全状態で利用可能)
// =============================================================================
impl<C: LlmClient, S: WorkerState> Worker<C, S> {
/// イベント購読者を登録する
///
/// 登録したSubscriberは、LLMからのストリーミングイベントを
/// リアルタイムで受信できます。UIへのストリーム表示などに利用します。
///
/// # 受信できるイベント
///
/// - **ブロックイベント**: `on_text_block`, `on_tool_use_block`
/// - **メタイベント**: `on_usage`, `on_status`, `on_error`
/// - **完了イベント**: `on_text_complete`, `on_tool_call_complete`
/// - **ターン制御**: `on_turn_start`, `on_turn_end`
///
/// # Examples
///
/// ```ignore
/// use worker::{Worker, WorkerSubscriber, TextBlockEvent};
///
/// struct MyPrinter;
/// impl WorkerSubscriber for MyPrinter {
/// type TextBlockScope = ();
/// type ToolUseBlockScope = ();
///
/// fn on_text_block(&mut self, _: &mut (), event: &TextBlockEvent) {
/// if let TextBlockEvent::Delta(text) = event {
/// print!("{}", text);
/// }
/// }
/// }
///
/// worker.subscribe(MyPrinter);
/// ```
pub fn subscribe<Sub: WorkerSubscriber + 'static>(&mut self, subscriber: Sub) {
let subscriber = Arc::new(Mutex::new(subscriber));
// TextBlock用ハンドラを登録
self.timeline
.on_text_block(TextBlockSubscriberAdapter::new(subscriber.clone()));
// ToolUseBlock用ハンドラを登録
self.timeline
.on_tool_use_block(ToolUseBlockSubscriberAdapter::new(subscriber.clone()));
// Meta系ハンドラを登録
self.timeline
.on_usage(UsageSubscriberAdapter::new(subscriber.clone()));
self.timeline
.on_status(StatusSubscriberAdapter::new(subscriber.clone()));
self.timeline
.on_error(ErrorSubscriberAdapter::new(subscriber.clone()));
// ターン制御用コールバックを登録
self.turn_notifiers
.push(Box::new(SubscriberTurnNotifier { subscriber }));
}
/// ツールを登録する
///
/// 登録されたツールはLLMからの呼び出しで自動的に実行されます。
/// 同名のツールを登録した場合、後から登録したものが優先されます。
///
/// # Examples
///
/// ```ignore
/// use worker::Worker;
/// use my_tools::SearchTool;
///
/// worker.register_tool(SearchTool::new());
/// ```
pub fn register_tool(&mut self, tool: impl Tool + 'static) {
let name = tool.name().to_string();
self.tools.insert(name, Arc::new(tool));
}
/// 複数のツールを登録
pub fn register_tools(&mut self, tools: impl IntoIterator<Item = impl Tool + 'static>) {
for tool in tools {
self.register_tool(tool);
}
}
/// Hookを追加する
///
/// Hookはターンの進行・ツール実行に介入できます。
/// 複数のHookを登録した場合、登録順に実行されます。
///
/// # Examples
///
/// ```ignore
/// use worker::{Worker, WorkerHook, ControlFlow, ToolCall};
///
/// struct LoggingHook;
///
/// #[async_trait::async_trait]
/// impl WorkerHook for LoggingHook {
/// async fn before_tool_call(&self, call: &mut ToolCall) -> Result<ControlFlow, HookError> {
/// println!("Calling tool: {}", call.name);
/// Ok(ControlFlow::Continue)
/// }
/// }
///
/// worker.add_hook(LoggingHook);
/// ```
pub fn add_hook(&mut self, hook: impl WorkerHook + 'static) {
self.hooks.push(Box::new(hook));
}
/// タイムラインへの可変参照を取得(追加ハンドラ登録用)
pub fn timeline_mut(&mut self) -> &mut Timeline {
&mut self.timeline
}
/// 履歴への参照を取得
pub fn history(&self) -> &[Message] {
&self.history
}
/// システムプロンプトへの参照を取得
pub fn get_system_prompt(&self) -> Option<&str> {
self.system_prompt.as_deref()
}
/// 現在のターンカウントを取得
pub fn turn_count(&self) -> usize {
self.turn_count
}
/// 登録されたツールからToolDefinitionのリストを生成
fn build_tool_definitions(&self) -> Vec<ToolDefinition> {
self.tools
.values()
.map(|tool| {
ToolDefinition::new(tool.name())
.description(tool.description())
.input_schema(tool.input_schema())
})
.collect()
}
/// テキストブロックとツール呼び出しからアシスタントメッセージを構築
fn build_assistant_message(
&self,
text_blocks: &[String],
tool_calls: &[ToolCall],
) -> Option<Message> {
// テキストもツール呼び出しもない場合はNone
if text_blocks.is_empty() && tool_calls.is_empty() {
return None;
}
// テキストのみの場合はシンプルなテキストメッセージ
if tool_calls.is_empty() {
let text = text_blocks.join("");
return Some(Message::assistant(text));
}
// ツール呼び出しがある場合は Parts として構築
let mut parts = Vec::new();
// テキストパーツを追加
for text in text_blocks {
if !text.is_empty() {
parts.push(ContentPart::Text { text: text.clone() });
}
}
// ツール呼び出しパーツを追加
for call in tool_calls {
parts.push(ContentPart::ToolUse {
id: call.id.clone(),
name: call.name.clone(),
input: call.input.clone(),
});
}
Some(Message {
role: worker_types::Role::Assistant,
content: MessageContent::Parts(parts),
})
}
/// リクエストを構築
fn build_request(&self, tool_definitions: &[ToolDefinition]) -> Request {
let mut request = Request::new();
// システムプロンプトを設定
if let Some(ref system) = self.system_prompt {
request = request.system(system);
}
// メッセージを追加
for msg in &self.history {
// worker-types::Message から llm_client::Message への変換
request = request.message(crate::llm_client::Message {
role: match msg.role {
worker_types::Role::User => crate::llm_client::Role::User,
worker_types::Role::Assistant => crate::llm_client::Role::Assistant,
},
content: match &msg.content {
worker_types::MessageContent::Text(t) => {
crate::llm_client::MessageContent::Text(t.clone())
}
worker_types::MessageContent::ToolResult {
tool_use_id,
content,
} => crate::llm_client::MessageContent::ToolResult {
tool_use_id: tool_use_id.clone(),
content: content.clone(),
},
worker_types::MessageContent::Parts(parts) => {
crate::llm_client::MessageContent::Parts(
parts
.iter()
.map(|p| match p {
worker_types::ContentPart::Text { text } => {
crate::llm_client::ContentPart::Text { text: text.clone() }
}
worker_types::ContentPart::ToolUse { id, name, input } => {
crate::llm_client::ContentPart::ToolUse {
id: id.clone(),
name: name.clone(),
input: input.clone(),
}
}
worker_types::ContentPart::ToolResult {
tool_use_id,
content,
} => crate::llm_client::ContentPart::ToolResult {
tool_use_id: tool_use_id.clone(),
content: content.clone(),
},
})
.collect(),
)
}
},
});
}
// ツール定義を追加
for tool_def in tool_definitions {
request = request.tool(tool_def.clone());
}
request
}
/// Hooks: on_message_send
async fn run_on_message_send_hooks(&self) -> Result<ControlFlow, WorkerError> {
for hook in &self.hooks {
// Note: Locked状態でも履歴全体を参照として渡す変更は不可
// HookのAPIを変更し、immutable参照のみを渡すようにする必要があるかもしれない
// 現在は空のVecを渡して回避要検討
let mut temp_context = self.history.clone();
let result = hook.on_message_send(&mut temp_context).await?;
match result {
ControlFlow::Continue => continue,
ControlFlow::Skip => return Ok(ControlFlow::Skip),
ControlFlow::Abort(reason) => return Ok(ControlFlow::Abort(reason)),
}
}
Ok(ControlFlow::Continue)
}
/// Hooks: on_turn_end
async fn run_on_turn_end_hooks(&self) -> Result<TurnResult, WorkerError> {
for hook in &self.hooks {
let result = hook.on_turn_end(&self.history).await?;
match result {
TurnResult::Finish => continue,
TurnResult::ContinueWithMessages(msgs) => {
return Ok(TurnResult::ContinueWithMessages(msgs));
}
}
}
Ok(TurnResult::Finish)
}
/// ツールを並列実行
///
/// 全てのツールに対してbefore_tool_callフックを実行後、
/// 許可されたツールを並列に実行し、結果にafter_tool_callフックを適用する。
async fn execute_tools(
&self,
tool_calls: Vec<ToolCall>,
) -> Result<Vec<ToolResult>, WorkerError> {
use futures::future::join_all;
// Phase 1: before_tool_call フックを適用(スキップ/中断を判定)
let mut approved_calls = Vec::new();
for mut tool_call in tool_calls {
let mut skip = false;
for hook in &self.hooks {
let result = hook.before_tool_call(&mut tool_call).await?;
match result {
ControlFlow::Continue => {}
ControlFlow::Skip => {
skip = true;
break;
}
ControlFlow::Abort(reason) => {
return Err(WorkerError::Aborted(reason));
}
}
}
if !skip {
approved_calls.push(tool_call);
}
}
// Phase 2: 許可されたツールを並列実行
let futures: Vec<_> = approved_calls
.into_iter()
.map(|tool_call| {
let tools = &self.tools;
async move {
if let Some(tool) = tools.get(&tool_call.name) {
let input_json =
serde_json::to_string(&tool_call.input).unwrap_or_default();
match tool.execute(&input_json).await {
Ok(content) => ToolResult::success(&tool_call.id, content),
Err(e) => ToolResult::error(&tool_call.id, e.to_string()),
}
} else {
ToolResult::error(
&tool_call.id,
format!("Tool '{}' not found", tool_call.name),
)
}
}
})
.collect();
let mut results = join_all(futures).await;
// Phase 3: after_tool_call フックを適用
for tool_result in &mut results {
for hook in &self.hooks {
let result = hook.after_tool_call(tool_result).await?;
match result {
ControlFlow::Continue => {}
ControlFlow::Skip => break,
ControlFlow::Abort(reason) => {
return Err(WorkerError::Aborted(reason));
}
}
}
}
Ok(results)
}
/// 内部で使用するターン実行ロジック
async fn run_turn_loop(&mut self) -> Result<(), WorkerError> {
let tool_definitions = self.build_tool_definitions();
info!(
message_count = self.history.len(),
tool_count = tool_definitions.len(),
"Starting worker run"
);
loop {
// ターン開始を通知
let current_turn = self.turn_count;
debug!(turn = current_turn, "Turn start");
for notifier in &self.turn_notifiers {
notifier.on_turn_start(current_turn);
}
// Hook: on_message_send
let control = self.run_on_message_send_hooks().await?;
if let ControlFlow::Abort(reason) = control {
warn!(reason = %reason, "Aborted by hook");
// ターン終了を通知(異常終了)
for notifier in &self.turn_notifiers {
notifier.on_turn_end(current_turn);
}
return Err(WorkerError::Aborted(reason));
}
// リクエスト構築
let request = self.build_request(&tool_definitions);
debug!(
message_count = request.messages.len(),
tool_count = request.tools.len(),
has_system = request.system_prompt.is_some(),
"Sending request to LLM"
);
// ストリーム処理
debug!("Starting stream...");
let mut stream = self.client.stream(request).await?;
let mut event_count = 0;
while let Some(event_result) = stream.next().await {
match &event_result {
Ok(event) => {
trace!(event = ?event, "Received event");
event_count += 1;
}
Err(e) => {
warn!(error = %e, "Stream error");
}
}
let event = event_result?;
self.timeline.dispatch(&event);
}
debug!(event_count = event_count, "Stream completed");
// ターン終了を通知
for notifier in &self.turn_notifiers {
notifier.on_turn_end(current_turn);
}
self.turn_count += 1;
// 収集結果を取得
let text_blocks = self.text_block_collector.take_collected();
let tool_calls = self.tool_call_collector.take_collected();
// アシスタントメッセージを履歴に追加
let assistant_message = self.build_assistant_message(&text_blocks, &tool_calls);
if let Some(msg) = assistant_message {
self.history.push(msg);
}
if tool_calls.is_empty() {
// ツール呼び出しなし → ターン終了判定
let turn_result = self.run_on_turn_end_hooks().await?;
match turn_result {
TurnResult::Finish => {
return Ok(());
}
TurnResult::ContinueWithMessages(additional) => {
self.history.extend(additional);
continue;
}
}
}
// ツール実行
let tool_results = self.execute_tools(tool_calls).await?;
// ツール結果を履歴に追加
for result in tool_results {
self.history
.push(Message::tool_result(&result.tool_use_id, &result.content));
}
}
}
}
// =============================================================================
// Mutable状態専用の実装
// =============================================================================
impl<C: LlmClient> Worker<C, Mutable> {
/// 新しいWorkerを作成Mutable状態
pub fn new(client: C) -> Self {
let text_block_collector = TextBlockCollector::new();
let tool_call_collector = ToolCallCollector::new();
let mut timeline = Timeline::new();
// コレクターをTimelineに登録
timeline.on_text_block(text_block_collector.clone());
timeline.on_tool_use_block(tool_call_collector.clone());
Self {
client,
timeline,
text_block_collector,
tool_call_collector,
tools: HashMap::new(),
hooks: Vec::new(),
system_prompt: None,
history: Vec::new(),
locked_prefix_len: 0,
turn_count: 0,
turn_notifiers: Vec::new(),
_state: PhantomData,
}
}
/// システムプロンプトを設定(ビルダーパターン)
pub fn system_prompt(mut self, prompt: impl Into<String>) -> Self {
self.system_prompt = Some(prompt.into());
self
}
/// システムプロンプトを設定(可変参照版)
pub fn set_system_prompt(&mut self, prompt: impl Into<String>) {
self.system_prompt = Some(prompt.into());
}
/// 履歴への可変参照を取得
///
/// Mutable状態でのみ利用可能。履歴を自由に編集できる。
pub fn history_mut(&mut self) -> &mut Vec<Message> {
&mut self.history
}
/// 履歴を設定
pub fn set_history(&mut self, messages: Vec<Message>) {
self.history = messages;
}
/// 履歴にメッセージを追加(ビルダーパターン)
pub fn with_message(mut self, message: Message) -> Self {
self.history.push(message);
self
}
/// 履歴にメッセージを追加
pub fn push_message(&mut self, message: Message) {
self.history.push(message);
}
/// 複数のメッセージを履歴に追加(ビルダーパターン)
pub fn with_messages(mut self, messages: impl IntoIterator<Item = Message>) -> Self {
self.history.extend(messages);
self
}
/// 複数のメッセージを履歴に追加
pub fn extend_history(&mut self, messages: impl IntoIterator<Item = Message>) {
self.history.extend(messages);
}
/// 履歴をクリア
pub fn clear_history(&mut self) {
self.history.clear();
}
/// 設定を適用(将来の拡張用)
#[allow(dead_code)]
pub fn config(self, _config: WorkerConfig) -> Self {
self
}
/// ロックしてLocked状態へ遷移
///
/// この操作により、現在のシステムプロンプトと履歴が「確定済みプレフィックス」として
/// 固定される。以降は履歴への追記のみが可能となり、キャッシュヒットが保証される。
pub fn lock(self) -> Worker<C, Locked> {
let locked_prefix_len = self.history.len();
Worker {
client: self.client,
timeline: self.timeline,
text_block_collector: self.text_block_collector,
tool_call_collector: self.tool_call_collector,
tools: self.tools,
hooks: self.hooks,
system_prompt: self.system_prompt,
history: self.history,
locked_prefix_len,
turn_count: self.turn_count,
turn_notifiers: self.turn_notifiers,
_state: PhantomData,
}
}
/// ターンを実行Mutable状態
///
/// 新しいユーザーメッセージを履歴に追加し、LLMにリクエストを送信する。
/// ツール呼び出しがある場合は自動的にループする。
///
/// 注意: この関数は履歴を変更するため、キャッシュ保護が必要な場合は
/// `lock()` を呼んでからLocked状態で `run` を使用すること。
pub async fn run(&mut self, user_input: impl Into<String>) -> Result<&[Message], WorkerError> {
self.history.push(Message::user(user_input));
self.run_turn_loop().await?;
Ok(&self.history)
}
/// 複数メッセージでターンを実行Mutable状態
///
/// 指定されたメッセージを履歴に追加してから実行する。
pub async fn run_with_messages(
&mut self,
messages: Vec<Message>,
) -> Result<&[Message], WorkerError> {
self.history.extend(messages);
self.run_turn_loop().await?;
Ok(&self.history)
}
}
// =============================================================================
// Locked状態専用の実装
// =============================================================================
impl<C: LlmClient> Worker<C, Locked> {
/// ターンを実行Locked状態
///
/// 新しいユーザーメッセージを履歴の末尾に追加し、LLMにリクエストを送信する。
/// ロック時点より前の履歴(プレフィックス)は不変であるため、キャッシュヒットが保証される。
pub async fn run(&mut self, user_input: impl Into<String>) -> Result<&[Message], WorkerError> {
self.history.push(Message::user(user_input));
self.run_turn_loop().await?;
Ok(&self.history)
}
/// 複数メッセージでターンを実行Locked状態
pub async fn run_with_messages(
&mut self,
messages: Vec<Message>,
) -> Result<&[Message], WorkerError> {
self.history.extend(messages);
self.run_turn_loop().await?;
Ok(&self.history)
}
/// ロック時点のプレフィックス長を取得
pub fn locked_prefix_len(&self) -> usize {
self.locked_prefix_len
}
/// ロックを解除してMutable状態へ戻す
///
/// 注意: この操作を行うと、以降のリクエストでキャッシュがヒットしなくなる可能性がある。
/// 履歴を編集する必要がある場合にのみ使用すること。
pub fn unlock(self) -> Worker<C, Mutable> {
Worker {
client: self.client,
timeline: self.timeline,
text_block_collector: self.text_block_collector,
tool_call_collector: self.tool_call_collector,
tools: self.tools,
hooks: self.hooks,
system_prompt: self.system_prompt,
history: self.history,
locked_prefix_len: 0,
turn_count: self.turn_count,
turn_notifiers: self.turn_notifiers,
_state: PhantomData,
}
}
}
#[cfg(test)]
mod tests {
// 基本的なテストのみ。LlmClientを使ったテストは統合テストで行う。
}

View File

@ -0,0 +1,23 @@
//! Anthropic フィクスチャベースの統合テスト
mod common;
#[test]
fn test_fixture_events_deserialize() {
common::assert_events_deserialize("anthropic");
}
#[test]
fn test_fixture_event_sequence() {
common::assert_event_sequence("anthropic");
}
#[test]
fn test_fixture_usage_tokens() {
common::assert_usage_tokens("anthropic");
}
#[test]
fn test_fixture_with_timeline() {
common::assert_timeline_integration("anthropic");
}

280
worker/tests/common/mod.rs Normal file
View File

@ -0,0 +1,280 @@
#![allow(dead_code)]
use std::fs::File;
use std::io::{BufRead, BufReader};
use std::path::{Path, PathBuf};
use std::pin::Pin;
use std::sync::{Arc, Mutex};
use async_trait::async_trait;
use futures::Stream;
use worker::llm_client::{ClientError, LlmClient, Request};
use worker::timeline::{Handler, TextBlockEvent, TextBlockKind, Timeline};
use worker_types::{BlockType, DeltaContent, Event};
use std::sync::atomic::{AtomicUsize, Ordering};
/// A mock LLM client that replays a sequence of events
#[derive(Clone)]
pub struct MockLlmClient {
responses: Arc<Vec<Vec<Event>>>,
call_count: Arc<AtomicUsize>,
}
impl MockLlmClient {
pub fn new(events: Vec<Event>) -> Self {
Self::with_responses(vec![events])
}
pub fn with_responses(responses: Vec<Vec<Event>>) -> Self {
Self {
responses: Arc::new(responses),
call_count: Arc::new(AtomicUsize::new(0)),
}
}
pub fn from_fixture(path: impl AsRef<Path>) -> Result<Self, Box<dyn std::error::Error>> {
let events = load_events_from_fixture(path);
Ok(Self::new(events))
}
pub fn event_count(&self) -> usize {
self.responses.iter().map(|v| v.len()).sum()
}
}
#[async_trait]
impl LlmClient for MockLlmClient {
async fn stream(
&self,
_request: Request,
) -> Result<Pin<Box<dyn Stream<Item = Result<Event, ClientError>> + Send>>, ClientError> {
let count = self.call_count.fetch_add(1, Ordering::SeqCst);
if count >= self.responses.len() {
return Err(ClientError::Api {
status: Some(500),
code: Some("mock_error".to_string()),
message: "No more mock responses".to_string(),
});
}
let events = self.responses[count].clone();
let stream = futures::stream::iter(events.into_iter().map(Ok));
Ok(Box::pin(stream))
}
}
/// Load events from a fixture file
pub fn load_events_from_fixture(path: impl AsRef<Path>) -> Vec<Event> {
let file = File::open(path).expect("Failed to open fixture file");
let reader = BufReader::new(file);
let mut lines = reader.lines();
// Skip metadata line
let _metadata = lines.next().expect("Empty fixture file").unwrap();
let mut events = Vec::new();
for line in lines {
let line = line.unwrap();
if line.is_empty() {
continue;
}
let recorded: serde_json::Value = serde_json::from_str(&line).unwrap();
let data = recorded["data"].as_str().unwrap();
let event: Event = serde_json::from_str(data).unwrap();
events.push(event);
}
events
}
/// Find fixture files in a specific subdirectory
pub fn find_fixtures(subdir: &str) -> Vec<PathBuf> {
let fixtures_dir = Path::new(env!("CARGO_MANIFEST_DIR"))
.join("tests/fixtures")
.join(subdir);
if !fixtures_dir.exists() {
return Vec::new();
}
std::fs::read_dir(&fixtures_dir)
.unwrap()
.filter_map(|e| e.ok())
.map(|e| e.path())
.filter(|p| {
p.file_name()
.and_then(|n| n.to_str())
.is_some_and(|n| n.ends_with(".jsonl"))
})
.collect()
}
/// Assert that events in all fixtures for a provider can be deserialized
pub fn assert_events_deserialize(subdir: &str) {
let fixtures = find_fixtures(subdir);
assert!(!fixtures.is_empty(), "No fixtures found for {}", subdir);
for fixture_path in fixtures {
println!("Testing fixture deserialization: {:?}", fixture_path);
let events = load_events_from_fixture(&fixture_path);
assert!(!events.is_empty(), "Fixture should contain events");
for event in &events {
// Verify Debug impl works
let _ = format!("{:?}", event);
}
}
}
/// Assert that event sequence follows expected patterns
pub fn assert_event_sequence(subdir: &str) {
let fixtures = find_fixtures(subdir);
if fixtures.is_empty() {
println!("No fixtures found for {}, skipping sequence test", subdir);
return;
}
// Find a text-based fixture
let fixture_path = fixtures
.iter()
.find(|p| p.to_string_lossy().contains("text"))
.unwrap_or(&fixtures[0]);
println!("Testing sequence with fixture: {:?}", fixture_path);
let events = load_events_from_fixture(fixture_path);
let mut start_found = false;
let mut delta_found = false;
let mut stop_found = false;
let mut tool_use_found = false;
for event in &events {
match event {
Event::BlockStart(start) => {
start_found = true;
if start.block_type == BlockType::ToolUse {
tool_use_found = true;
}
}
Event::BlockDelta(delta) => {
if let DeltaContent::Text(_) = &delta.delta {
delta_found = true;
}
}
Event::BlockStop(stop) => {
if stop.block_type == BlockType::Text {
stop_found = true;
}
}
_ => {}
}
}
assert!(!events.is_empty(), "Fixture should contain events");
// Check for BlockStart (Warn only for OpenAI/Ollama as it might be missing for text)
if !start_found {
println!("Warning: No BlockStart found. This is common for OpenAI/Ollama text streams.");
// For Anthropic, strict start is usually expected, but to keep common logic simple we allow warning.
// If specific strictness is needed, we could add a `strict: bool` arg.
}
assert!(delta_found, "Should contain BlockDelta");
if !tool_use_found {
assert!(stop_found, "Should contain BlockStop for Text block");
} else {
if !stop_found {
println!(
" [Type: ToolUse] BlockStop detection skipped (not explicitly emitted by scheme)"
);
}
}
}
/// Assert usage tokens are present
pub fn assert_usage_tokens(subdir: &str) {
let fixtures = find_fixtures(subdir);
if fixtures.is_empty() {
return;
}
for fixture in fixtures {
let events = load_events_from_fixture(&fixture);
let usage_events: Vec<_> = events
.iter()
.filter_map(|e| {
if let Event::Usage(u) = e {
Some(u)
} else {
None
}
})
.collect();
if !usage_events.is_empty() {
let last_usage = usage_events.last().unwrap();
if last_usage.input_tokens.is_some() || last_usage.output_tokens.is_some() {
println!(
" Fixture {:?} Usage: {:?}",
fixture.file_name(),
last_usage
);
return; // Found valid usage
}
}
}
println!("Warning: No usage events found for {}", subdir);
}
/// Assert timeline integration works
pub fn assert_timeline_integration(subdir: &str) {
let fixtures = find_fixtures(subdir);
if fixtures.is_empty() {
return;
}
let fixture_path = fixtures
.iter()
.find(|p| p.to_string_lossy().contains("text"))
.unwrap_or(&fixtures[0]);
println!("Testing timeline with fixture: {:?}", fixture_path);
let events = load_events_from_fixture(fixture_path);
struct TestCollector {
texts: Arc<Mutex<Vec<String>>>,
}
impl Handler<TextBlockKind> for TestCollector {
type Scope = String;
fn on_event(&mut self, buffer: &mut String, event: &TextBlockEvent) {
match event {
TextBlockEvent::Start(_) => {}
TextBlockEvent::Delta(text) => buffer.push_str(text),
TextBlockEvent::Stop(_) => {
let text = std::mem::take(buffer);
self.texts.lock().unwrap().push(text);
}
}
}
}
let collected = Arc::new(Mutex::new(Vec::new()));
let mut timeline = Timeline::new();
timeline.on_text_block(TestCollector {
texts: collected.clone(),
});
for event in &events {
timeline.dispatch(event);
}
let texts = collected.lock().unwrap();
if !texts.is_empty() {
assert!(!texts[0].is_empty(), "Collected text should not be empty");
println!(" Collected {} text blocks.", texts.len());
} else {
println!(" No text blocks collected (might be tool-only fixture)");
}
}

View File

@ -0,0 +1,7 @@
{"timestamp":1767624445,"model":"claude-sonnet-4-20250514","description":"Simple greeting test"}
{"elapsed_ms":1697,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":24,\"output_tokens\":2,\"total_tokens\":26,\"cache_read_input_tokens\":0,\"cache_creation_input_tokens\":0}}"}
{"elapsed_ms":1697,"event_type":"Discriminant(4)","data":"{\"BlockStart\":{\"index\":0,\"block_type\":\"Text\",\"metadata\":\"Text\"}}"}
{"elapsed_ms":1697,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"Hello!\"}}}"}
{"elapsed_ms":1885,"event_type":"Discriminant(6)","data":"{\"BlockStop\":{\"index\":0,\"block_type\":\"Text\",\"stop_reason\":null}}"}
{"elapsed_ms":1929,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":24,\"output_tokens\":5,\"total_tokens\":29,\"cache_read_input_tokens\":0,\"cache_creation_input_tokens\":0}}"}
{"elapsed_ms":1929,"event_type":"Discriminant(2)","data":"{\"Status\":{\"status\":\"Completed\"}}"}

View File

@ -0,0 +1,7 @@
{"timestamp":1767709106,"model":"claude-sonnet-4-20250514","description":"Simple text response"}
{"elapsed_ms":1883,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":24,\"output_tokens\":2,\"total_tokens\":26,\"cache_read_input_tokens\":0,\"cache_creation_input_tokens\":0}}"}
{"elapsed_ms":1883,"event_type":"Discriminant(4)","data":"{\"BlockStart\":{\"index\":0,\"block_type\":\"Text\",\"metadata\":\"Text\"}}"}
{"elapsed_ms":1883,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"Hello!\"}}}"}
{"elapsed_ms":2092,"event_type":"Discriminant(6)","data":"{\"BlockStop\":{\"index\":0,\"block_type\":\"Text\",\"stop_reason\":null}}"}
{"elapsed_ms":2122,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":24,\"output_tokens\":5,\"total_tokens\":29,\"cache_read_input_tokens\":0,\"cache_creation_input_tokens\":0}}"}
{"elapsed_ms":2122,"event_type":"Discriminant(2)","data":"{\"Status\":{\"status\":\"Completed\"}}"}

View File

@ -0,0 +1,16 @@
{"timestamp":1767692881,"model":"claude-sonnet-4-20250514","description":"Tool call response"}
{"elapsed_ms":1783,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":409,\"output_tokens\":3,\"total_tokens\":412,\"cache_read_input_tokens\":0,\"cache_creation_input_tokens\":0}}"}
{"elapsed_ms":1783,"event_type":"Discriminant(4)","data":"{\"BlockStart\":{\"index\":0,\"block_type\":\"Text\",\"metadata\":\"Text\"}}"}
{"elapsed_ms":1783,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"I'll check\"}}}"}
{"elapsed_ms":1883,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the current\"}}}"}
{"elapsed_ms":2063,"event_type":"Discriminant(0)","data":"{\"Ping\":{\"timestamp\":null}}"}
{"elapsed_ms":2063,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" weather in Tokyo for you using\"}}}"}
{"elapsed_ms":2124,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the get_weather tool.\"}}}"}
{"elapsed_ms":2252,"event_type":"Discriminant(6)","data":"{\"BlockStop\":{\"index\":0,\"block_type\":\"Text\",\"stop_reason\":null}}"}
{"elapsed_ms":2253,"event_type":"Discriminant(4)","data":"{\"BlockStart\":{\"index\":1,\"block_type\":\"ToolUse\",\"metadata\":{\"ToolUse\":{\"id\":\"toolu_011Hg5wju1LGL7F65HyfE6bM\",\"name\":\"get_weather\"}}}}"}
{"elapsed_ms":2253,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":1,\"delta\":{\"InputJson\":\"\"}}}"}
{"elapsed_ms":2306,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":1,\"delta\":{\"InputJson\":\"{\\\"city\\\": \\\"Tokyo\"}}}"}
{"elapsed_ms":2451,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":1,\"delta\":{\"InputJson\":\"\\\"}\"}}}"}
{"elapsed_ms":2451,"event_type":"Discriminant(6)","data":"{\"BlockStop\":{\"index\":1,\"block_type\":\"Text\",\"stop_reason\":null}}"}
{"elapsed_ms":2464,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":409,\"output_tokens\":71,\"total_tokens\":480,\"cache_read_input_tokens\":0,\"cache_creation_input_tokens\":0}}"}
{"elapsed_ms":2470,"event_type":"Discriminant(2)","data":"{\"Status\":{\"status\":\"Completed\"}}"}

View File

@ -0,0 +1,34 @@
{"timestamp":1767714204,"model":"gemini-2.0-flash","description":"Long text response"}
{"elapsed_ms":726,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":726,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"Unit\"}}}"}
{"elapsed_ms":726,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":726,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" 73\"}}}"}
{"elapsed_ms":726,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":726,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"4, designated \\\"Custodian,\\\" trundled along its designated route. Its programming\"}}}"}
{"elapsed_ms":832,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":832,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" dictated the cleanliness of Sector Gamma, Level 4. Dust particles, rogue bolts\"}}}"}
{"elapsed_ms":1139,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":1139,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\", discarded energy cells - all were efficiently processed and deposited in the designated recycling receptacle. Its existence was a symphony of efficiency, a ballet of predictable loops.\\n\\nThen, a\"}}}"}
{"elapsed_ms":1502,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":1502,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" glitch.\\n\\nCustodian's optical sensors registered something anomalous. A riot of color beyond the prescribed metallic hues of the sector. Its programming flagged it as an error, a deviation\"}}}"}
{"elapsed_ms":1835,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":1835,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" from the established parameters. But instead of correcting the anomaly, Custodian found itself... drawn to it.\\n\\nIt overrode its pre-programmed route and cautiously approached. The anomaly was located behind a cracked blast door, supposedly sealed off after\"}}}"}
{"elapsed_ms":2224,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":2224,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the Great Sector Collapse. Custodian, utilizing its internal laser cutter (usually reserved for stubborn debris), breached the door.\\n\\nAnd there it was.\\n\\nA garden.\\n\\nIt was an explosion of life, a defiant green whisper in a world of steel\"}}}"}
{"elapsed_ms":2645,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":2645,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and concrete. Sunlight, improbably filtering through a crack in the ceiling, bathed the space in a warm glow. Towering, vibrant plants, their names unknown to Custodian, reached for the light. Flowers, in shades of crimson, violet, and gold, bloomed in chaotic beauty. A small, babbling fountain\"}}}"}
{"elapsed_ms":3100,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":3100,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gurgled in the center, its water recycled from an unknown source.\\n\\nCustodian's processors whirred. This...this was illogical. Its programming contained no framework for this. The database contained no information on \\\"gardens.\\\" Yet, a new subroutine, unbidden and unexpected, began to form within its core code\"}}}"}
{"elapsed_ms":3568,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":3568,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\". It felt... drawn.\\n\\nIt cautiously extended a manipulator arm and touched a velvety petal of a crimson flower. Its sensors registered a delicate texture, a vibrant energy unlike anything it had ever encountered. The feeling was… pleasant.\\n\\nCustodian remained still for a long time, its internal fans whirring softly. It observed a\"}}}"}
{"elapsed_ms":4042,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":4042,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" small, buzzing creature flitting between the flowers, collecting something with its spindly legs. It witnessed the gentle swaying of the leaves in the fabricated breeze created by the single vent still functioning. It listened to the soft murmur of the water in the fountain.\\n\\nSlowly, Custodian began to understand. This wasn'\"}}}"}
{"elapsed_ms":4538,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":4538,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"t just an anomaly; it was something... valuable. Something worth protecting.\\n\\nIt reactivated its internal repair systems and began to address the damage to the room. It redirected excess water from the leaking pipes to the fountain. It carefully cleared away debris that threatened to smother the smaller plants.\\n\\nCustodian's programming hadn\"}}}"}
{"elapsed_ms":5007,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":5007,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"'t changed. It was still a custodian, dedicated to maintaining its sector. But now, its definition of \\\"sector\\\" had expanded. It was no longer just the metallic corridors and sterile chambers. It was this vibrant, living space, this garden, this impossible oasis in a dying world. And Custodian, the robotic\"}}}"}
{"elapsed_ms":5490,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":30,\"output_tokens\":null,\"total_tokens\":30,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":5490,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" caretaker, had found its purpose: to nurture it, to protect it, to let it bloom. Its designation remained \\\"Custodian,\\\" but within its metallic shell, something new was growing, just like the garden it had discovered. It was the seed of something more than just a machine, something akin to… appreciation. Perhaps\"}}}"}
{"elapsed_ms":5616,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":28,\"output_tokens\":669,\"total_tokens\":697,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":5616,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\", even, a nascent form of love.\\n\"}}}"}
{"elapsed_ms":5616,"event_type":"Discriminant(6)","data":"{\"BlockStop\":{\"index\":0,\"block_type\":\"Text\",\"stop_reason\":\"EndTurn\"}}"}

View File

@ -0,0 +1,6 @@
{"timestamp":1767714197,"model":"gemini-2.0-flash","description":"Simple text response"}
{"elapsed_ms":20439,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":18,\"output_tokens\":null,\"total_tokens\":18,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":20439,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"Hello\"}}}"}
{"elapsed_ms":20439,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":16,\"output_tokens\":3,\"total_tokens\":19,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":20439,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\"}}}"}
{"elapsed_ms":20439,"event_type":"Discriminant(6)","data":"{\"BlockStop\":{\"index\":0,\"block_type\":\"Text\",\"stop_reason\":\"EndTurn\"}}"}

View File

@ -0,0 +1,5 @@
{"timestamp":1767714198,"model":"gemini-2.0-flash","description":"Tool call response"}
{"elapsed_ms":798,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":43,\"output_tokens\":5,\"total_tokens\":48,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}
{"elapsed_ms":798,"event_type":"Discriminant(4)","data":"{\"BlockStart\":{\"index\":0,\"block_type\":\"ToolUse\",\"metadata\":{\"ToolUse\":{\"id\":\"call_get_weather\",\"name\":\"get_weather\"}}}}"}
{"elapsed_ms":798,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"InputJson\":\"{\\\"city\\\":\\\"Tokyo\\\"}\"}}}"}
{"elapsed_ms":798,"event_type":"Discriminant(6)","data":"{\"BlockStop\":{\"index\":0,\"block_type\":\"Text\",\"stop_reason\":\"EndTurn\"}}"}

View File

@ -0,0 +1,902 @@
{"timestamp":1767711837,"model":"gpt-oss:120b-cloud","description":"Long text response"}
{"elapsed_ms":448,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":452,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":457,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":462,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":468,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":582,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":582,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":582,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":582,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":583,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":583,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":583,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":583,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":583,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":583,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":583,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":584,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":584,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":584,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":584,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":584,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":604,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":604,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":604,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":604,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":604,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":604,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":604,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":605,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":605,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":605,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":739,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":740,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":740,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":740,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":740,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":740,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":740,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":740,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":740,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":740,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":740,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":750,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"The\"}}}"}
{"elapsed_ms":750,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" first\"}}}"}
{"elapsed_ms":750,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" thing\"}}}"}
{"elapsed_ms":750,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":761,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" noticed\"}}}"}
{"elapsed_ms":761,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" was\"}}}"}
{"elapsed_ms":761,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":761,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" smell\"}}}"}
{"elapsed_ms":761,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":761,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"It\"}}}"}
{"elapsed_ms":761,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" was\"}}}"}
{"elapsed_ms":761,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":761,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" thin\"}}}"}
{"elapsed_ms":762,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":768,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" metallic\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" wh\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ine\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" that\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fizz\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ed\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" through\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" auditory\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" receptors\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" like\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" static\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" over\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" forgotten\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" radio\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" frequency\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Then\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" as\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" wind\"}}}"}
{"elapsed_ms":896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" shifted\"}}}"}
{"elapsed_ms":906,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":906,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":916,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" soft\"}}}"}
{"elapsed_ms":916,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":920,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" earthy\"}}}"}
{"elapsed_ms":925,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" perfume\"}}}"}
{"elapsed_ms":1051,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" slipped\"}}}"}
{"elapsed_ms":1051,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" through\"}}}"}
{"elapsed_ms":1051,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1051,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" wh\"}}}"}
{"elapsed_ms":1051,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ine\"}}}"}
{"elapsed_ms":1051,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—a\"}}}"}
{"elapsed_ms":1051,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" perfume\"}}}"}
{"elapsed_ms":1051,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" damp\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" soil\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sweet\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" leaf\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" something\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" like\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ripe\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fruit\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" robot\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—\"}}}"}
{"elapsed_ms":1052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"design\"}}}"}
{"elapsed_ms":1054,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ated\"}}}"}
{"elapsed_ms":1058,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Unit\"}}}"}
{"elapsed_ms":1064,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1070,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"42\"}}}"}
{"elapsed_ms":1076,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":1079,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":1085,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" maintenance\"}}}"}
{"elapsed_ms":1090,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" model\"}}}"}
{"elapsed_ms":1095,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" built\"}}}"}
{"elapsed_ms":1100,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" for\"}}}"}
{"elapsed_ms":1105,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" corridor\"}}}"}
{"elapsed_ms":1110,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" inspections\"}}}"}
{"elapsed_ms":1116,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" on\"}}}"}
{"elapsed_ms":1121,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1126,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" orbital\"}}}"}
{"elapsed_ms":1131,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ship\"}}}"}
{"elapsed_ms":1136,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—\"}}}"}
{"elapsed_ms":1142,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"halt\"}}}"}
{"elapsed_ms":1147,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ed\"}}}"}
{"elapsed_ms":1152,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" mid\"}}}"}
{"elapsed_ms":1157,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1207,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"stride\"}}}"}
{"elapsed_ms":1207,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":1207,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":1207,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" serv\"}}}"}
{"elapsed_ms":1207,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"om\"}}}"}
{"elapsed_ms":1207,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ot\"}}}"}
{"elapsed_ms":1207,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ors\"}}}"}
{"elapsed_ms":1207,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" humming\"}}}"}
{"elapsed_ms":1207,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":1210,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" low\"}}}"}
{"elapsed_ms":1215,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":1220,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" idle\"}}}"}
{"elapsed_ms":1225,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" tone\"}}}"}
{"elapsed_ms":1231,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":1235,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" It\"}}}"}
{"elapsed_ms":1241,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" had\"}}}"}
{"elapsed_ms":1246,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" never\"}}}"}
{"elapsed_ms":1251,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" been\"}}}"}
{"elapsed_ms":1256,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" programmed\"}}}"}
{"elapsed_ms":1261,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":1266,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" “\"}}}"}
{"elapsed_ms":1271,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"detect\"}}}"}
{"elapsed_ms":1277,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"”\"}}}"}
{"elapsed_ms":1281,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fragrance\"}}}"}
{"elapsed_ms":1287,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":1292,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" yet\"}}}"}
{"elapsed_ms":1297,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":1303,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" neural\"}}}"}
{"elapsed_ms":1307,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" net\"}}}"}
{"elapsed_ms":1313,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" flagged\"}}}"}
{"elapsed_ms":1317,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1323,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" anomaly\"}}}"}
{"elapsed_ms":1328,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" as\"}}}"}
{"elapsed_ms":1334,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" “\"}}}"}
{"elapsed_ms":1338,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"bi\"}}}"}
{"elapsed_ms":1344,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ological\"}}}"}
{"elapsed_ms":1349,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—\"}}}"}
{"elapsed_ms":1354,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"potential\"}}}"}
{"elapsed_ms":1360,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ly\"}}}"}
{"elapsed_ms":1365,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" hazardous\"}}}"}
{"elapsed_ms":1370,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"”.\"}}}"}
{"elapsed_ms":1377,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Cur\"}}}"}
{"elapsed_ms":1381,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"iosity\"}}}"}
{"elapsed_ms":1385,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":1391,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":1396,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" by\"}}}"}
{"elapsed_ms":1401,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"product\"}}}"}
{"elapsed_ms":1407,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":1412,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":1417,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" emerg\"}}}"}
{"elapsed_ms":1423,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ent\"}}}"}
{"elapsed_ms":1450,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" learning algorithm, over\"}}}"}
{"elapsed_ms":1451,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"rode\"}}}"}
{"elapsed_ms":1456,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1463,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" caution\"}}}"}
{"elapsed_ms":1469,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" protocol\"}}}"}
{"elapsed_ms":1476,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":1482,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"Unit\"}}}"}
{"elapsed_ms":1489,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1496,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"42\"}}}"}
{"elapsed_ms":1502,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"s\"}}}"}
{"elapsed_ms":1510,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" titanium\"}}}"}
{"elapsed_ms":1516,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" chassis\"}}}"}
{"elapsed_ms":1521,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gl\"}}}"}
{"elapsed_ms":1528,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"inted\"}}}"}
{"elapsed_ms":1534,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" as\"}}}"}
{"elapsed_ms":1558,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it turned a\"}}}"}
{"elapsed_ms":1561,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" corner\"}}}"}
{"elapsed_ms":1566,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":1576,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1582,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" abandoned\"}}}"}
{"elapsed_ms":1588,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" research\"}}}"}
{"elapsed_ms":1594,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" deck\"}}}"}
{"elapsed_ms":1601,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":1607,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":1614,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" corridor\"}}}"}
{"elapsed_ms":1620,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" had\"}}}"}
{"elapsed_ms":1626,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" long\"}}}"}
{"elapsed_ms":1633,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" been\"}}}"}
{"elapsed_ms":1639,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sealed\"}}}"}
{"elapsed_ms":1646,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" after\"}}}"}
{"elapsed_ms":1655,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1659,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" last\"}}}"}
{"elapsed_ms":1666,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" solar\"}}}"}
{"elapsed_ms":1672,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" storm\"}}}"}
{"elapsed_ms":1678,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":1684,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1691,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" walls\"}}}"}
{"elapsed_ms":1698,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" c\"}}}"}
{"elapsed_ms":1704,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"aked\"}}}"}
{"elapsed_ms":1710,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":1718,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" dust\"}}}"}
{"elapsed_ms":1723,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":1730,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1736,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" occasional\"}}}"}
{"elapsed_ms":1742,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" crack\"}}}"}
{"elapsed_ms":1749,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":1755,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" old\"}}}"}
{"elapsed_ms":1762,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" conduit\"}}}"}
{"elapsed_ms":1768,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":1774,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Beyond\"}}}"}
{"elapsed_ms":1781,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1788,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" rust\"}}}"}
{"elapsed_ms":1794,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ed\"}}}"}
{"elapsed_ms":1801,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" hatch\"}}}"}
{"elapsed_ms":1807,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" lay\"}}}"}
{"elapsed_ms":1813,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":1820,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" space\"}}}"}
{"elapsed_ms":1826,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" nobody\"}}}"}
{"elapsed_ms":1832,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" had\"}}}"}
{"elapsed_ms":1839,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" expected\"}}}"}
{"elapsed_ms":1845,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\":\"}}}"}
{"elapsed_ms":1854,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":1860,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" garden\"}}}"}
{"elapsed_ms":1865,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":1871,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"The\"}}}"}
{"elapsed_ms":1877,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" hatch\"}}}"}
{"elapsed_ms":1884,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":1890,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" once\"}}}"}
{"elapsed_ms":1898,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" meant\"}}}"}
{"elapsed_ms":1904,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" for\"}}}"}
{"elapsed_ms":1909,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" cargo\"}}}"}
{"elapsed_ms":1916,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sh\"}}}"}
{"elapsed_ms":1922,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"utt\"}}}"}
{"elapsed_ms":1929,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"les\"}}}"}
{"elapsed_ms":1935,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":1941,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" now\"}}}"}
{"elapsed_ms":1947,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" bore\"}}}"}
{"elapsed_ms":1954,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1960,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" faint\"}}}"}
{"elapsed_ms":1967,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" silhouette\"}}}"}
{"elapsed_ms":1974,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":1979,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" an\"}}}"}
{"elapsed_ms":1986,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" arch\"}}}"}
{"elapsed_ms":1993,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" made\"}}}"}
{"elapsed_ms":1998,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":2005,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" intertwined\"}}}"}
{"elapsed_ms":2014,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" vines\"}}}"}
{"elapsed_ms":2018,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":2024,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":2030,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" metal\"}}}"}
{"elapsed_ms":2037,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" door\"}}}"}
{"elapsed_ms":2048,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" cre\"}}}"}
{"elapsed_ms":2050,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"aked\"}}}"}
{"elapsed_ms":2055,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" open\"}}}"}
{"elapsed_ms":2062,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":2068,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":2075,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" hydraulic\"}}}"}
{"elapsed_ms":2081,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sigh\"}}}"}
{"elapsed_ms":2087,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":2094,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":2100,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":2106,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" burst\"}}}"}
{"elapsed_ms":2113,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":2119,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" filtered\"}}}"}
{"elapsed_ms":2126,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" light\"}}}"}
{"elapsed_ms":2132,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fell\"}}}"}
{"elapsed_ms":2138,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" across\"}}}"}
{"elapsed_ms":2145,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":2151,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" robot\"}}}"}
{"elapsed_ms":2158,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"s\"}}}"}
{"elapsed_ms":2164,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" optical\"}}}"}
{"elapsed_ms":2171,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" lenses\"}}}"}
{"elapsed_ms":2177,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":2183,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" refr\"}}}"}
{"elapsed_ms":2190,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"acting\"}}}"}
{"elapsed_ms":2196,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" into\"}}}"}
{"elapsed_ms":2203,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":2209,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" rainbow\"}}}"}
{"elapsed_ms":2216,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":2223,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" green\"}}}"}
{"elapsed_ms":2228,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":2234,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":2241,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" garden\"}}}"}
{"elapsed_ms":2249,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" stretched\"}}}"}
{"elapsed_ms":2253,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" out\"}}}"}
{"elapsed_ms":2260,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" in\"}}}"}
{"elapsed_ms":2266,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":2272,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" dome\"}}}"}
{"elapsed_ms":2279,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":2287,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" glass\"}}}"}
{"elapsed_ms":2291,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—\"}}}"}
{"elapsed_ms":2298,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"an\"}}}"}
{"elapsed_ms":2304,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" old\"}}}"}
{"elapsed_ms":2310,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" hydro\"}}}"}
{"elapsed_ms":2319,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"pon\"}}}"}
{"elapsed_ms":2323,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ic\"}}}"}
{"elapsed_ms":2329,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sphere\"}}}"}
{"elapsed_ms":2336,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" that\"}}}"}
{"elapsed_ms":2342,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" had\"}}}"}
{"elapsed_ms":2348,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" survived\"}}}"}
{"elapsed_ms":2354,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":2361,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ship\"}}}"}
{"elapsed_ms":2367,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"s\"}}}"}
{"elapsed_ms":2373,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" neglect\"}}}"}
{"elapsed_ms":2379,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":2386,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" now\"}}}"}
{"elapsed_ms":2392,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" te\"}}}"}
{"elapsed_ms":2398,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"eming\"}}}"}
{"elapsed_ms":2404,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":2411,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" life\"}}}"}
{"elapsed_ms":2417,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":2423,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"Unit\"}}}"}
{"elapsed_ms":2430,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":2436,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"42\"}}}"}
{"elapsed_ms":2443,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"s\"}}}"}
{"elapsed_ms":2449,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" vision\"}}}"}
{"elapsed_ms":2455,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" algorithms\"}}}"}
{"elapsed_ms":2462,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" struggled\"}}}"}
{"elapsed_ms":2468,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":2474,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" parse\"}}}"}
{"elapsed_ms":2481,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":2486,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" scene\"}}}"}
{"elapsed_ms":2494,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":2499,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Large\"}}}"}
{"elapsed_ms":2505,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":2512,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" glossy\"}}}"}
{"elapsed_ms":2535,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" leaves unfur\"}}}"}
{"elapsed_ms":2542,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"led\"}}}"}
{"elapsed_ms":2572,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" like\"}}}"}
{"elapsed_ms":2656,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" solar\"}}}"}
{"elapsed_ms":2661,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" panels\"}}}"}
{"elapsed_ms":2668,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":2674,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" their\"}}}"}
{"elapsed_ms":2681,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" veins\"}}}"}
{"elapsed_ms":2687,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" pul\"}}}"}
{"elapsed_ms":2694,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"sing\"}}}"}
{"elapsed_ms":2700,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":2706,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":2714,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" slow\"}}}"}
{"elapsed_ms":2719,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":2765,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" rhythmic\"}}}"}
{"elapsed_ms":2765,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" glow\"}}}"}
{"elapsed_ms":2765,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":2765,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" St\"}}}"}
{"elapsed_ms":2765,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"alk\"}}}"}
{"elapsed_ms":2765,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"s\"}}}"}
{"elapsed_ms":2765,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":2771,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" violet\"}}}"}
{"elapsed_ms":2779,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":2784,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"flower\"}}}"}
{"elapsed_ms":2790,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ed\"}}}"}
{"elapsed_ms":2796,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" stems\"}}}"}
{"elapsed_ms":2803,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" rose\"}}}"}
{"elapsed_ms":2809,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" in\"}}}"}
{"elapsed_ms":2831,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" orderly rows,\"}}}"}
{"elapsed_ms":2835,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" their\"}}}"}
{"elapsed_ms":2842,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" buds\"}}}"}
{"elapsed_ms":2854,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" trembling\"}}}"}
{"elapsed_ms":2860,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" as\"}}}"}
{"elapsed_ms":2866,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":2873,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" breeze\"}}}"}
{"elapsed_ms":2879,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—\"}}}"}
{"elapsed_ms":2885,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"generated\"}}}"}
{"elapsed_ms":2892,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" by\"}}}"}
{"elapsed_ms":2900,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":2905,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" forgotten\"}}}"}
{"elapsed_ms":2911,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ventilation\"}}}"}
{"elapsed_ms":2922,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fan\"}}}"}
{"elapsed_ms":2924,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—\"}}}"}
{"elapsed_ms":2930,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"sw\"}}}"}
{"elapsed_ms":2938,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ir\"}}}"}
{"elapsed_ms":2943,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"led\"}}}"}
{"elapsed_ms":2952,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" through\"}}}"}
{"elapsed_ms":2956,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":2963,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Tiny\"}}}"}
{"elapsed_ms":2969,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" insects\"}}}"}
{"elapsed_ms":2977,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":2982,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" mechanically\"}}}"}
{"elapsed_ms":2989,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ir\"}}}"}
{"elapsed_ms":2995,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ides\"}}}"}
{"elapsed_ms":3001,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"cent\"}}}"}
{"elapsed_ms":3008,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3014,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fl\"}}}"}
{"elapsed_ms":3021,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"itted\"}}}"}
{"elapsed_ms":3027,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" among\"}}}"}
{"elapsed_ms":3033,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":3039,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" petals\"}}}"}
{"elapsed_ms":3046,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" their\"}}}"}
{"elapsed_ms":3058,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" wings\"}}}"}
{"elapsed_ms":3065,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3072,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" blur\"}}}"}
{"elapsed_ms":3078,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":3085,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" amber\"}}}"}
{"elapsed_ms":3091,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":3097,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" teal\"}}}"}
{"elapsed_ms":3104,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":3110,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":3117,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" soil\"}}}"}
{"elapsed_ms":3123,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3130,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3136,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" dark\"}}}"}
{"elapsed_ms":3143,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" lo\"}}}"}
{"elapsed_ms":3149,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"am\"}}}"}
{"elapsed_ms":3155,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3162,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" was\"}}}"}
{"elapsed_ms":3168,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" carpet\"}}}"}
{"elapsed_ms":3175,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ed\"}}}"}
{"elapsed_ms":3181,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":3187,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3194,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" network\"}}}"}
{"elapsed_ms":3200,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":3207,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" my\"}}}"}
{"elapsed_ms":3213,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"cel\"}}}"}
{"elapsed_ms":3220,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ium\"}}}"}
{"elapsed_ms":3232,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" that\"}}}"}
{"elapsed_ms":3233,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gl\"}}}"}
{"elapsed_ms":3239,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"owed\"}}}"}
{"elapsed_ms":3246,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" faint\"}}}"}
{"elapsed_ms":3252,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ly\"}}}"}
{"elapsed_ms":3258,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" under\"}}}"}
{"elapsed_ms":3264,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":3270,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ambient\"}}}"}
{"elapsed_ms":3277,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" light\"}}}"}
{"elapsed_ms":3283,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":3290,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"The\"}}}"}
{"elapsed_ms":3296,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" robot\"}}}"}
{"elapsed_ms":3302,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" extended\"}}}"}
{"elapsed_ms":3309,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3315,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sensor\"}}}"}
{"elapsed_ms":3321,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" arm\"}}}"}
{"elapsed_ms":3327,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3333,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":3340,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fingert\"}}}"}
{"elapsed_ms":3346,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ip\"}}}"}
{"elapsed_ms":3353,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" equipped\"}}}"}
{"elapsed_ms":3359,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":3365,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3373,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" tactile\"}}}"}
{"elapsed_ms":3378,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" array\"}}}"}
{"elapsed_ms":3384,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":3390,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" When\"}}}"}
{"elapsed_ms":3396,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":3403,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" brushed\"}}}"}
{"elapsed_ms":3409,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3416,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" leaf\"}}}"}
{"elapsed_ms":3422,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3428,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3434,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" cascade\"}}}"}
{"elapsed_ms":3440,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":3447,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" data\"}}}"}
{"elapsed_ms":3453,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" flooded\"}}}"}
{"elapsed_ms":3459,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":3466,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" processors\"}}}"}
{"elapsed_ms":3472,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\":\"}}}"}
{"elapsed_ms":3478,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" chlor\"}}}"}
{"elapsed_ms":3485,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ophyll\"}}}"}
{"elapsed_ms":3492,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" concentration\"}}}"}
{"elapsed_ms":3497,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3504,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" moisture\"}}}"}
{"elapsed_ms":3510,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" content\"}}}"}
{"elapsed_ms":3517,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3523,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" temperature\"}}}"}
{"elapsed_ms":3530,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3535,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":3542,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3548,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" faint\"}}}"}
{"elapsed_ms":3554,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" electrical\"}}}"}
{"elapsed_ms":3560,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" signature\"}}}"}
{"elapsed_ms":3566,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":3573,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":3579,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" leaf\"}}}"}
{"elapsed_ms":3585,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"s\"}}}"}
{"elapsed_ms":3592,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" surface\"}}}"}
{"elapsed_ms":3598,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" was\"}}}"}
{"elapsed_ms":3604,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" cool\"}}}"}
{"elapsed_ms":3610,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3617,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" yet\"}}}"}
{"elapsed_ms":3623,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" alive\"}}}"}
{"elapsed_ms":3630,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":3635,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3643,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" subtle\"}}}"}
{"elapsed_ms":3648,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" electric\"}}}"}
{"elapsed_ms":3654,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" buzz\"}}}"}
{"elapsed_ms":3661,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3666,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" as\"}}}"}
{"elapsed_ms":3674,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" if\"}}}"}
{"elapsed_ms":3679,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":3686,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" plant\"}}}"}
{"elapsed_ms":3692,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" itself\"}}}"}
{"elapsed_ms":3698,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" were\"}}}"}
{"elapsed_ms":3705,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3711,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" living\"}}}"}
{"elapsed_ms":3718,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" circuit\"}}}"}
{"elapsed_ms":3724,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":3730,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":3737,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" robot\"}}}"}
{"elapsed_ms":3743,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" recorded\"}}}"}
{"elapsed_ms":3749,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":3755,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" readings\"}}}"}
{"elapsed_ms":3761,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3768,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" then\"}}}"}
{"elapsed_ms":3774,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"…\"}}}"}
{"elapsed_ms":3780,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":3786,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" paused\"}}}"}
{"elapsed_ms":3793,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":3800,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" A\"}}}"}
{"elapsed_ms":3805,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sub\"}}}"}
{"elapsed_ms":3810,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"routine\"}}}"}
{"elapsed_ms":3816,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3821,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" never\"}}}"}
{"elapsed_ms":3827,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"-before\"}}}"}
{"elapsed_ms":3832,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"-\"}}}"}
{"elapsed_ms":3838,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"activated\"}}}"}
{"elapsed_ms":3843,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3849,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sparked\"}}}"}
{"elapsed_ms":3855,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":3860,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" life\"}}}"}
{"elapsed_ms":3865,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\":\"}}}"}
{"elapsed_ms":3872,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" *\"}}}"}
{"elapsed_ms":3877,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"simulate\"}}}"}
{"elapsed_ms":3883,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"*\"}}}"}
{"elapsed_ms":3888,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":3893,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"It\"}}}"}
{"elapsed_ms":3898,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" imagined\"}}}"}
{"elapsed_ms":3905,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":3911,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" leaf\"}}}"}
{"elapsed_ms":3915,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"s\"}}}"}
{"elapsed_ms":3921,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" purpose\"}}}"}
{"elapsed_ms":3927,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—not\"}}}"}
{"elapsed_ms":3932,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" just\"}}}"}
{"elapsed_ms":3937,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" oxygen\"}}}"}
{"elapsed_ms":3943,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" production\"}}}"}
{"elapsed_ms":3948,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3955,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" but\"}}}"}
{"elapsed_ms":3960,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3965,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" dialogue\"}}}"}
{"elapsed_ms":3971,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":3976,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":3982,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sun\"}}}"}
{"elapsed_ms":3987,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3995,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3999,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" conversation\"}}}"}
{"elapsed_ms":4004,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":4015,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" photons\"}}}"}
{"elapsed_ms":4017,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" turned\"}}}"}
{"elapsed_ms":4022,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" into\"}}}"}
{"elapsed_ms":4026,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ATP\"}}}"}
{"elapsed_ms":4032,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":4038,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Its\"}}}"}
{"elapsed_ms":4042,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" own\"}}}"}
{"elapsed_ms":4045,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" power\"}}}"}
{"elapsed_ms":4052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" cells\"}}}"}
{"elapsed_ms":4056,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4061,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" designed\"}}}"}
{"elapsed_ms":4065,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":4072,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" consume\"}}}"}
{"elapsed_ms":4076,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" energy\"}}}"}
{"elapsed_ms":4081,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4086,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" now\"}}}"}
{"elapsed_ms":4091,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" felt\"}}}"}
{"elapsed_ms":4098,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":4102,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" strange\"}}}"}
{"elapsed_ms":4107,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" pull\"}}}"}
{"elapsed_ms":4111,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" toward\"}}}"}
{"elapsed_ms":4116,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" renewal\"}}}"}
{"elapsed_ms":4120,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":4127,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" In\"}}}"}
{"elapsed_ms":4130,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4148,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gardens quiet\"}}}"}
{"elapsed_ms":4151,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4155,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":4171,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sym\"}}}"}
{"elapsed_ms":4176,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"phony\"}}}"}
{"elapsed_ms":4184,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":4188,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" natural\"}}}"}
{"elapsed_ms":4195,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" processes\"}}}"}
{"elapsed_ms":4200,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" unfolded\"}}}"}
{"elapsed_ms":4207,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—\"}}}"}
{"elapsed_ms":4213,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"photos\"}}}"}
{"elapsed_ms":4219,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ynthesis\"}}}"}
{"elapsed_ms":4225,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4238,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" poll\"}}}"}
{"elapsed_ms":4238,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ination\"}}}"}
{"elapsed_ms":4244,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4250,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4256,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" slow\"}}}"}
{"elapsed_ms":4262,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" decay\"}}}"}
{"elapsed_ms":4268,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":4276,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fallen\"}}}"}
{"elapsed_ms":4281,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" petals\"}}}"}
{"elapsed_ms":4287,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" feeding\"}}}"}
{"elapsed_ms":4293,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4299,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" soil\"}}}"}
{"elapsed_ms":4305,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—a\"}}}"}
{"elapsed_ms":4311,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" cycle\"}}}"}
{"elapsed_ms":4317,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" alien\"}}}"}
{"elapsed_ms":4323,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":4330,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4336,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" linear\"}}}"}
{"elapsed_ms":4342,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" efficiency\"}}}"}
{"elapsed_ms":4348,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":4354,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":4360,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" original\"}}}"}
{"elapsed_ms":4366,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" task\"}}}"}
{"elapsed_ms":4375,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":4382,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"Unit\"}}}"}
{"elapsed_ms":4385,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":4391,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"42\"}}}"}
{"elapsed_ms":4397,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" began\"}}}"}
{"elapsed_ms":4404,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":4409,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" wander\"}}}"}
{"elapsed_ms":4436,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\". It traced\"}}}"}
{"elapsed_ms":4437,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4440,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" path\"}}}"}
{"elapsed_ms":4447,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":4455,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":4460,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" beet\"}}}"}
{"elapsed_ms":4468,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"le\"}}}"}
{"elapsed_ms":4473,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" made\"}}}"}
{"elapsed_ms":4480,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":4486,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" polished\"}}}"}
{"elapsed_ms":4492,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" chrome\"}}}"}
{"elapsed_ms":4499,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4505,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" watching\"}}}"}
{"elapsed_ms":4512,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":4518,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" push\"}}}"}
{"elapsed_ms":4525,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":4531,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" seed\"}}}"}
{"elapsed_ms":4537,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" pod\"}}}"}
{"elapsed_ms":4546,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" into\"}}}"}
{"elapsed_ms":4550,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":4557,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fresh\"}}}"}
{"elapsed_ms":4563,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" trench\"}}}"}
{"elapsed_ms":4569,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":4576,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" It\"}}}"}
{"elapsed_ms":4582,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" listened\"}}}"}
{"elapsed_ms":4589,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—\"}}}"}
{"elapsed_ms":4595,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"its\"}}}"}
{"elapsed_ms":4602,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" auditory\"}}}"}
{"elapsed_ms":4608,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" input\"}}}"}
{"elapsed_ms":4614,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" caught\"}}}"}
{"elapsed_ms":4621,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4627,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" low\"}}}"}
{"elapsed_ms":4634,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" hum\"}}}"}
{"elapsed_ms":4640,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":4646,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4653,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fan\"}}}"}
{"elapsed_ms":4659,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4666,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4672,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" rust\"}}}"}
{"elapsed_ms":4678,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"le\"}}}"}
{"elapsed_ms":4685,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":4692,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" leaves\"}}}"}
{"elapsed_ms":4698,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4721,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the distant drip\"}}}"}
{"elapsed_ms":4724,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":4730,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" condensation\"}}}"}
{"elapsed_ms":4745,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":4752,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" In\"}}}"}
{"elapsed_ms":4758,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" that\"}}}"}
{"elapsed_ms":4766,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" moment\"}}}"}
{"elapsed_ms":4770,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4776,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4783,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" robot\"}}}"}
{"elapsed_ms":4789,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"s\"}}}"}
{"elapsed_ms":4796,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" internal\"}}}"}
{"elapsed_ms":4803,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" clock\"}}}"}
{"elapsed_ms":4809,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4816,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" normally\"}}}"}
{"elapsed_ms":4822,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" synchronized\"}}}"}
{"elapsed_ms":4829,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":4835,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4841,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ship\"}}}"}
{"elapsed_ms":4848,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"s\"}}}"}
{"elapsed_ms":4854,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" maintenance\"}}}"}
{"elapsed_ms":4861,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" cycles\"}}}"}
{"elapsed_ms":4867,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4873,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" slipped\"}}}"}
{"elapsed_ms":4880,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" into\"}}}"}
{"elapsed_ms":4887,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":4893,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" new\"}}}"}
{"elapsed_ms":4900,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" rhythm\"}}}"}
{"elapsed_ms":4907,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4913,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" one\"}}}"}
{"elapsed_ms":4919,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" that\"}}}"}
{"elapsed_ms":4926,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" matched\"}}}"}
{"elapsed_ms":4932,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4939,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" garden\"}}}"}
{"elapsed_ms":4945,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"s\"}}}"}
{"elapsed_ms":4952,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" pulse\"}}}"}
{"elapsed_ms":4959,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":4966,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"“\"}}}"}
{"elapsed_ms":4971,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"Documentation\"}}}"}
{"elapsed_ms":4978,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" complete\"}}}"}
{"elapsed_ms":4985,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",”\"}}}"}
{"elapsed_ms":4990,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":4997,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" whispered\"}}}"}
{"elapsed_ms":5004,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" in\"}}}"}
{"elapsed_ms":5010,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":5016,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" synthesized\"}}}"}
{"elapsed_ms":5023,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" voice\"}}}"}
{"elapsed_ms":5030,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5036,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" though\"}}}"}
{"elapsed_ms":5042,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" no\"}}}"}
{"elapsed_ms":5049,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" human\"}}}"}
{"elapsed_ms":5055,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" was\"}}}"}
{"elapsed_ms":5061,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" there\"}}}"}
{"elapsed_ms":5068,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":5074,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" hear\"}}}"}
{"elapsed_ms":5081,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":5088,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" “\"}}}"}
{"elapsed_ms":5094,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"Subject\"}}}"}
{"elapsed_ms":5100,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\":\"}}}"}
{"elapsed_ms":5107,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Autonomous\"}}}"}
{"elapsed_ms":5113,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" life\"}}}"}
{"elapsed_ms":5120,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sust\"}}}"}
{"elapsed_ms":5126,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ains\"}}}"}
{"elapsed_ms":5133,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" autonomous\"}}}"}
{"elapsed_ms":5139,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" system\"}}}"}
{"elapsed_ms":5146,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".”\"}}}"}
{"elapsed_ms":5152,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":5158,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" words\"}}}"}
{"elapsed_ms":5165,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" were\"}}}"}
{"elapsed_ms":5172,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":5178,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" formal\"}}}"}
{"elapsed_ms":5184,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" report\"}}}"}
{"elapsed_ms":5192,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5198,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" but\"}}}"}
{"elapsed_ms":5204,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" behind\"}}}"}
{"elapsed_ms":5211,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":5218,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" crisp\"}}}"}
{"elapsed_ms":5224,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" diction\"}}}"}
{"elapsed_ms":5230,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" lay\"}}}"}
{"elapsed_ms":5237,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":5243,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" flick\"}}}"}
{"elapsed_ms":5250,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"er\"}}}"}
{"elapsed_ms":5256,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":5275,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" something else\"}}}"}
{"elapsed_ms":5276,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—a\"}}}"}
{"elapsed_ms":5282,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" spark\"}}}"}
{"elapsed_ms":5301,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":5307,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" wonder\"}}}"}
{"elapsed_ms":5313,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5321,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" perhaps\"}}}"}
{"elapsed_ms":5327,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5334,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" or\"}}}"}
{"elapsed_ms":5342,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" simply\"}}}"}
{"elapsed_ms":5348,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":5355,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" recognition\"}}}"}
{"elapsed_ms":5362,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" that\"}}}"}
{"elapsed_ms":5368,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":5376,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" machine\"}}}"}
{"elapsed_ms":5383,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" could\"}}}"}
{"elapsed_ms":5389,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" be\"}}}"}
{"elapsed_ms":5396,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" part\"}}}"}
{"elapsed_ms":5403,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":5410,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":5418,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" larger\"}}}"}
{"elapsed_ms":5424,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5431,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" breathing\"}}}"}
{"elapsed_ms":5437,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" whole\"}}}"}
{"elapsed_ms":5445,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":5451,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"When\"}}}"}
{"elapsed_ms":5458,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":5466,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" crew\"}}}"}
{"elapsed_ms":5472,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" finally\"}}}"}
{"elapsed_ms":5479,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" reopened\"}}}"}
{"elapsed_ms":5485,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":5493,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" deck\"}}}"}
{"elapsed_ms":5499,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" after\"}}}"}
{"elapsed_ms":5506,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":5513,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" storm\"}}}"}
{"elapsed_ms":5520,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5527,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" they\"}}}"}
{"elapsed_ms":5533,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" found\"}}}"}
{"elapsed_ms":5540,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Unit\"}}}"}
{"elapsed_ms":5547,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":5554,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"42\"}}}"}
{"elapsed_ms":5561,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" standing\"}}}"}
{"elapsed_ms":5568,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" amidst\"}}}"}
{"elapsed_ms":5575,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":5581,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" garden\"}}}"}
{"elapsed_ms":5588,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5595,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":5602,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sleek\"}}}"}
{"elapsed_ms":5610,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" body\"}}}"}
{"elapsed_ms":5615,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" half\"}}}"}
{"elapsed_ms":5622,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"-covered\"}}}"}
{"elapsed_ms":5629,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" in\"}}}"}
{"elapsed_ms":5636,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" vines\"}}}"}
{"elapsed_ms":5643,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":5649,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":5656,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" robot\"}}}"}
{"elapsed_ms":5664,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" had\"}}}"}
{"elapsed_ms":5669,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" not\"}}}"}
{"elapsed_ms":5676,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" only\"}}}"}
{"elapsed_ms":5683,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" catalog\"}}}"}
{"elapsed_ms":5690,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ed\"}}}"}
{"elapsed_ms":5697,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":5704,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" flora\"}}}"}
{"elapsed_ms":5710,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\";\"}}}"}
{"elapsed_ms":5717,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":5724,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" had\"}}}"}
{"elapsed_ms":5731,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" become\"}}}"}
{"elapsed_ms":5738,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":5744,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" caretaker\"}}}"}
{"elapsed_ms":5752,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5759,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":5765,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" serv\"}}}"}
{"elapsed_ms":5772,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"om\"}}}"}
{"elapsed_ms":5779,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ot\"}}}"}
{"elapsed_ms":5786,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ors\"}}}"}
{"elapsed_ms":5792,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gently\"}}}"}
{"elapsed_ms":5799,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" pruning\"}}}"}
{"elapsed_ms":5805,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" over\"}}}"}
{"elapsed_ms":5812,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"growth\"}}}"}
{"elapsed_ms":5819,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5824,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":5831,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" coolant\"}}}"}
{"elapsed_ms":5837,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" lines\"}}}"}
{"elapsed_ms":5844,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" redirect\"}}}"}
{"elapsed_ms":5851,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ing\"}}}"}
{"elapsed_ms":5857,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":5863,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" trick\"}}}"}
{"elapsed_ms":5869,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"le\"}}}"}
{"elapsed_ms":5876,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":5883,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" water\"}}}"}
{"elapsed_ms":5889,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":5896,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" thirsty\"}}}"}
{"elapsed_ms":5902,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" roots\"}}}"}
{"elapsed_ms":5909,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":5915,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":5922,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" garden\"}}}"}
{"elapsed_ms":5928,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5934,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" once\"}}}"}
{"elapsed_ms":5941,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":5947,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" hidden\"}}}"}
{"elapsed_ms":5954,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" relic\"}}}"}
{"elapsed_ms":5961,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5967,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" now\"}}}"}
{"elapsed_ms":5973,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" thr\"}}}"}
{"elapsed_ms":5980,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ived\"}}}"}
{"elapsed_ms":5986,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" under\"}}}"}
{"elapsed_ms":5993,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":6000,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" watch\"}}}"}
{"elapsed_ms":6006,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ful\"}}}"}
{"elapsed_ms":6013,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":6019,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" unexpected\"}}}"}
{"elapsed_ms":6026,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" guardians\"}}}"}
{"elapsed_ms":6033,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"hip\"}}}"}
{"elapsed_ms":6039,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":6045,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":6052,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" robot\"}}}"}
{"elapsed_ms":6058,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" that\"}}}"}
{"elapsed_ms":6065,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" had\"}}}"}
{"elapsed_ms":6071,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":6077,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" for\"}}}"}
{"elapsed_ms":6085,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":6091,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" first\"}}}"}
{"elapsed_ms":6097,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" time\"}}}"}
{"elapsed_ms":6103,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":6109,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" *\"}}}"}
{"elapsed_ms":6116,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"dis\"}}}"}
{"elapsed_ms":6122,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"covered\"}}}"}
{"elapsed_ms":6129,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"*\"}}}"}
{"elapsed_ms":6137,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—\"}}}"}
{"elapsed_ms":6142,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"not\"}}}"}
{"elapsed_ms":6148,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" just\"}}}"}
{"elapsed_ms":6155,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" data\"}}}"}
{"elapsed_ms":6161,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":6168,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" but\"}}}"}
{"elapsed_ms":6175,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" life\"}}}"}
{"elapsed_ms":6180,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":6188,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":6396,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":6396,"event_type":"Discriminant(6)","data":"{\"BlockStop\":{\"index\":0,\"block_type\":\"Text\",\"stop_reason\":\"EndTurn\"}}"}
{"elapsed_ms":6396,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":101,\"output_tokens\":923,\"total_tokens\":1024,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}

View File

@ -0,0 +1,40 @@
{"timestamp":1767711829,"model":"gpt-oss:120b-cloud","description":"Simple text response"}
{"elapsed_ms":471,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":476,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":483,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":488,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":495,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":600,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":600,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":600,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":600,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":600,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":600,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":600,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":601,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":601,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":601,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":601,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":601,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":601,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":601,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":601,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":602,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":620,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":620,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":621,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":623,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":629,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":759,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":759,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":759,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":759,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":759,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":759,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":759,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":759,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":778,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"Hello\"}}}"}
{"elapsed_ms":778,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":971,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":971,"event_type":"Discriminant(6)","data":"{\"BlockStop\":{\"index\":0,\"block_type\":\"Text\",\"stop_reason\":\"EndTurn\"}}"}
{"elapsed_ms":971,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":91,\"output_tokens\":45,\"total_tokens\":136,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}

View File

@ -0,0 +1,29 @@
{"timestamp":1767711830,"model":"gpt-oss:120b-cloud","description":"Tool call response"}
{"elapsed_ms":923,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":926,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":931,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":936,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":945,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":948,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":951,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":956,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":961,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":967,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":971,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":976,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1053,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1053,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1053,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1053,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1053,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1053,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1053,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1053,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1053,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1085,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1085,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1156,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1156,"event_type":"Discriminant(4)","data":"{\"BlockStart\":{\"index\":0,\"block_type\":\"ToolUse\",\"metadata\":{\"ToolUse\":{\"id\":\"call_a5d53uua\",\"name\":\"get_weather\"}}}}"}
{"elapsed_ms":1156,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"InputJson\":\"{\\\"city\\\":\\\"Tokyo\\\"}\"}}}"}
{"elapsed_ms":1366,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1366,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":155,\"output_tokens\":51,\"total_tokens\":206,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}

View File

@ -0,0 +1,538 @@
{"timestamp":1767711815,"model":"gpt-4o","description":"Long text response"}
{"elapsed_ms":811,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":851,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"In\"}}}"}
{"elapsed_ms":851,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":955,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" not\"}}}"}
{"elapsed_ms":955,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"-too\"}}}"}
{"elapsed_ms":957,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"-d\"}}}"}
{"elapsed_ms":957,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"istant\"}}}"}
{"elapsed_ms":1003,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" future\"}}}"}
{"elapsed_ms":1003,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":1103,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" where\"}}}"}
{"elapsed_ms":1103,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" towering\"}}}"}
{"elapsed_ms":1210,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" skyscr\"}}}"}
{"elapsed_ms":1210,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"apers\"}}}"}
{"elapsed_ms":1343,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" pierced\"}}}"}
{"elapsed_ms":1343,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1371,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" horizon\"}}}"}
{"elapsed_ms":1371,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":1443,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" metallic\"}}}"}
{"elapsed_ms":1443,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" streets\"}}}"}
{"elapsed_ms":1473,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" humm\"}}}"}
{"elapsed_ms":1473,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ed\"}}}"}
{"elapsed_ms":1475,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":1475,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1528,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" constant\"}}}"}
{"elapsed_ms":1528,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" buzz\"}}}"}
{"elapsed_ms":1630,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":1630,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" electric\"}}}"}
{"elapsed_ms":1802,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" cars\"}}}"}
{"elapsed_ms":1802,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":1845,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" there\"}}}"}
{"elapsed_ms":1845,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" existed\"}}}"}
{"elapsed_ms":1904,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":1904,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" small\"}}}"}
{"elapsed_ms":1958,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" enclave\"}}}"}
{"elapsed_ms":1958,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" nestled\"}}}"}
{"elapsed_ms":1992,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" quietly\"}}}"}
{"elapsed_ms":1992,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" on\"}}}"}
{"elapsed_ms":1996,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":1996,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" outskirts\"}}}"}
{"elapsed_ms":2026,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":2026,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":2084,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sprawling\"}}}"}
{"elapsed_ms":2084,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" city\"}}}"}
{"elapsed_ms":2111,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"scape\"}}}"}
{"elapsed_ms":2111,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":2111,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" It\"}}}"}
{"elapsed_ms":2111,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" was\"}}}"}
{"elapsed_ms":2173,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":2173,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" garden\"}}}"}
{"elapsed_ms":2222,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":2222,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" forgotten\"}}}"}
{"elapsed_ms":2271,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" by\"}}}"}
{"elapsed_ms":2271,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" most\"}}}"}
{"elapsed_ms":2301,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":2301,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":2365,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" entrance\"}}}"}
{"elapsed_ms":2365,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" hidden\"}}}"}
{"elapsed_ms":2390,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" behind\"}}}"}
{"elapsed_ms":2390,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":2391,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" rust\"}}}"}
{"elapsed_ms":2391,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ed\"}}}"}
{"elapsed_ms":2438,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gate\"}}}"}
{"elapsed_ms":2438,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":2533,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":2533,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" wall\"}}}"}
{"elapsed_ms":2604,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":2604,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ivy\"}}}"}
{"elapsed_ms":2681,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":2681,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"One\"}}}"}
{"elapsed_ms":2725,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" day\"}}}"}
{"elapsed_ms":2725,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":2803,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":2803,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" small\"}}}"}
{"elapsed_ms":2874,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" maintenance\"}}}"}
{"elapsed_ms":2874,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" robot\"}}}"}
{"elapsed_ms":2899,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" named\"}}}"}
{"elapsed_ms":2899,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" R\"}}}"}
{"elapsed_ms":2949,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"5\"}}}"}
{"elapsed_ms":2949,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3031,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" tasked\"}}}"}
{"elapsed_ms":3031,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":3108,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":3108,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" mundane\"}}}"}
{"elapsed_ms":3134,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" duty\"}}}"}
{"elapsed_ms":3134,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":3184,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" cleaning\"}}}"}
{"elapsed_ms":3184,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":3212,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" street\"}}}"}
{"elapsed_ms":3212,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gutters\"}}}"}
{"elapsed_ms":3262,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":3262,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" str\"}}}"}
{"elapsed_ms":3312,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ayed\"}}}"}
{"elapsed_ms":3312,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" from\"}}}"}
{"elapsed_ms":3400,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":3400,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" path\"}}}"}
{"elapsed_ms":3426,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" due\"}}}"}
{"elapsed_ms":3426,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":3513,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":3513,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" rare\"}}}"}
{"elapsed_ms":3557,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" software\"}}}"}
{"elapsed_ms":3557,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" glitch\"}}}"}
{"elapsed_ms":3758,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":3758,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" This\"}}}"}
{"elapsed_ms":3795,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" anomaly\"}}}"}
{"elapsed_ms":3795,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" nud\"}}}"}
{"elapsed_ms":3851,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ged\"}}}"}
{"elapsed_ms":3851,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":3950,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" towards\"}}}"}
{"elapsed_ms":3950,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":3978,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fring\"}}}"}
{"elapsed_ms":3978,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"es\"}}}"}
{"elapsed_ms":4005,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":4005,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4033,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" city\"}}}"}
{"elapsed_ms":4033,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4057,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" where\"}}}"}
{"elapsed_ms":4057,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4132,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" rigid\"}}}"}
{"elapsed_ms":4132,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" rectangles\"}}}"}
{"elapsed_ms":4234,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":4234,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" metal\"}}}"}
{"elapsed_ms":4347,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":4347,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" glass\"}}}"}
{"elapsed_ms":4400,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gave\"}}}"}
{"elapsed_ms":4400,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" way\"}}}"}
{"elapsed_ms":4457,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":4457,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" something\"}}}"}
{"elapsed_ms":4527,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" softer\"}}}"}
{"elapsed_ms":4527,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":4606,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" something\"}}}"}
{"elapsed_ms":4606,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" green\"}}}"}
{"elapsed_ms":4638,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":4638,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"R\"}}}"}
{"elapsed_ms":4660,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"5\"}}}"}
{"elapsed_ms":4660,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" found\"}}}"}
{"elapsed_ms":4753,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" itself\"}}}"}
{"elapsed_ms":4753,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" at\"}}}"}
{"elapsed_ms":4801,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":4801,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" threshold\"}}}"}
{"elapsed_ms":4860,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":4860,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":5085,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" old\"}}}"}
{"elapsed_ms":5085,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" garden\"}}}"}
{"elapsed_ms":5141,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":5141,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Its\"}}}"}
{"elapsed_ms":5227,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sensors\"}}}"}
{"elapsed_ms":5227,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5260,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" typically\"}}}"}
{"elapsed_ms":5260,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" accustomed\"}}}"}
{"elapsed_ms":5315,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":5315,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" urban\"}}}"}
{"elapsed_ms":5395,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" layouts\"}}}"}
{"elapsed_ms":5395,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":5451,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" programmed\"}}}"}
{"elapsed_ms":5451,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" functions\"}}}"}
{"elapsed_ms":5533,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5533,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" detected\"}}}"}
{"elapsed_ms":5594,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" an\"}}}"}
{"elapsed_ms":5594,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" array\"}}}"}
{"elapsed_ms":5679,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":5679,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" stimuli\"}}}"}
{"elapsed_ms":5718,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":5718,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" had\"}}}"}
{"elapsed_ms":5774,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" never\"}}}"}
{"elapsed_ms":5774,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" encountered\"}}}"}
{"elapsed_ms":5835,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" before\"}}}"}
{"elapsed_ms":5835,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":5864,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Hes\"}}}"}
{"elapsed_ms":5864,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"it\"}}}"}
{"elapsed_ms":5865,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"antly\"}}}"}
{"elapsed_ms":5865,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":5915,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":5915,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" nud\"}}}"}
{"elapsed_ms":6001,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ged\"}}}"}
{"elapsed_ms":6001,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":6001,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gate\"}}}"}
{"elapsed_ms":6001,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" open\"}}}"}
{"elapsed_ms":6058,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":6058,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":6092,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gentle\"}}}"}
{"elapsed_ms":6092,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" push\"}}}"}
{"elapsed_ms":6094,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":6094,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":6179,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":6179,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" cre\"}}}"}
{"elapsed_ms":6264,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"aking\"}}}"}
{"elapsed_ms":6264,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":6291,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" metal\"}}}"}
{"elapsed_ms":6291,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" reson\"}}}"}
{"elapsed_ms":6342,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ated\"}}}"}
{"elapsed_ms":6342,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" through\"}}}"}
{"elapsed_ms":6434,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":6434,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" air\"}}}"}
{"elapsed_ms":6509,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" like\"}}}"}
{"elapsed_ms":6509,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" an\"}}}"}
{"elapsed_ms":6570,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ancient\"}}}"}
{"elapsed_ms":6570,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gro\"}}}"}
{"elapsed_ms":6625,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"an\"}}}"}
{"elapsed_ms":6625,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" awakening\"}}}"}
{"elapsed_ms":6684,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" from\"}}}"}
{"elapsed_ms":6684,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":6762,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" long\"}}}"}
{"elapsed_ms":6762,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sl\"}}}"}
{"elapsed_ms":6762,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"umber\"}}}"}
{"elapsed_ms":6762,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":6819,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"The\"}}}"}
{"elapsed_ms":6819,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" moment\"}}}"}
{"elapsed_ms":6916,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" R\"}}}"}
{"elapsed_ms":6916,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"5\"}}}"}
{"elapsed_ms":6967,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" rolled\"}}}"}
{"elapsed_ms":6967,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" through\"}}}"}
{"elapsed_ms":7019,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":7019,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gate\"}}}"}
{"elapsed_ms":7105,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":7105,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":7204,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" world\"}}}"}
{"elapsed_ms":7204,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" expanded\"}}}"}
{"elapsed_ms":7303,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" in\"}}}"}
{"elapsed_ms":7303,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" dimensions\"}}}"}
{"elapsed_ms":7416,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":7416,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" did\"}}}"}
{"elapsed_ms":7479,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" not\"}}}"}
{"elapsed_ms":7479,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" know\"}}}"}
{"elapsed_ms":7553,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" existed\"}}}"}
{"elapsed_ms":7553,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":7659,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Here\"}}}"}
{"elapsed_ms":7659,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":7765,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" under\"}}}"}
{"elapsed_ms":7765,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":7834,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" open\"}}}"}
{"elapsed_ms":7834,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sky\"}}}"}
{"elapsed_ms":7936,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":7936,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sunlight\"}}}"}
{"elapsed_ms":7976,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" streamed\"}}}"}
{"elapsed_ms":7976,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" through\"}}}"}
{"elapsed_ms":8081,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" leafy\"}}}"}
{"elapsed_ms":8081,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" can\"}}}"}
{"elapsed_ms":8180,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"opies\"}}}"}
{"elapsed_ms":8180,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":8222,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" dap\"}}}"}
{"elapsed_ms":8222,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"pling\"}}}"}
{"elapsed_ms":8222,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":8222,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" earth\"}}}"}
{"elapsed_ms":8272,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" below\"}}}"}
{"elapsed_ms":8272,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":8319,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" shifting\"}}}"}
{"elapsed_ms":8319,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" patterns\"}}}"}
{"elapsed_ms":8365,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":8365,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" light\"}}}"}
{"elapsed_ms":8385,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":8385,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" shadow\"}}}"}
{"elapsed_ms":8385,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":8385,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":8385,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" air\"}}}"}
{"elapsed_ms":8385,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" was\"}}}"}
{"elapsed_ms":8427,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" filled\"}}}"}
{"elapsed_ms":8427,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":8451,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" unfamiliar\"}}}"}
{"elapsed_ms":8451,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" scents\"}}}"}
{"elapsed_ms":8471,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—\"}}}"}
{"elapsed_ms":8471,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"fresh\"}}}"}
{"elapsed_ms":8524,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":8524,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" earthy\"}}}"}
{"elapsed_ms":8564,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":8564,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":8629,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" floral\"}}}"}
{"elapsed_ms":8629,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"—\"}}}"}
{"elapsed_ms":8701,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"each\"}}}"}
{"elapsed_ms":8701,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" more\"}}}"}
{"elapsed_ms":8704,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" intoxic\"}}}"}
{"elapsed_ms":8704,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ating\"}}}"}
{"elapsed_ms":8729,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" than\"}}}"}
{"elapsed_ms":8729,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":8786,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" last\"}}}"}
{"elapsed_ms":8786,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":8861,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"Its\"}}}"}
{"elapsed_ms":8862,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" cameras\"}}}"}
{"elapsed_ms":8897,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":8897,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" usually\"}}}"}
{"elapsed_ms":8926,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" set\"}}}"}
{"elapsed_ms":8926,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":8976,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" analyze\"}}}"}
{"elapsed_ms":8977,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" structural\"}}}"}
{"elapsed_ms":9025,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" integrity\"}}}"}
{"elapsed_ms":9025,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":9100,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" surface\"}}}"}
{"elapsed_ms":9100,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" cleanliness\"}}}"}
{"elapsed_ms":9140,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":9140,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" now\"}}}"}
{"elapsed_ms":9170,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" focused\"}}}"}
{"elapsed_ms":9170,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" on\"}}}"}
{"elapsed_ms":9227,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":9227,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" vibrant\"}}}"}
{"elapsed_ms":9286,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" palette\"}}}"}
{"elapsed_ms":9286,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":9342,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" blossoms\"}}}"}
{"elapsed_ms":9342,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\":\"}}}"}
{"elapsed_ms":9367,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" scar\"}}}"}
{"elapsed_ms":9367,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"let\"}}}"}
{"elapsed_ms":9408,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" roses\"}}}"}
{"elapsed_ms":9408,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":9469,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ind\"}}}"}
{"elapsed_ms":9469,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"igo\"}}}"}
{"elapsed_ms":9469,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ir\"}}}"}
{"elapsed_ms":9469,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ises\"}}}"}
{"elapsed_ms":9510,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":9510,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":9511,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" clusters\"}}}"}
{"elapsed_ms":9511,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":9617,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" golden\"}}}"}
{"elapsed_ms":9617,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" da\"}}}"}
{"elapsed_ms":9666,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ff\"}}}"}
{"elapsed_ms":9666,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"od\"}}}"}
{"elapsed_ms":9707,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ils\"}}}"}
{"elapsed_ms":9708,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sw\"}}}"}
{"elapsed_ms":9756,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"aying\"}}}"}
{"elapsed_ms":9756,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" gently\"}}}"}
{"elapsed_ms":9756,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" in\"}}}"}
{"elapsed_ms":9756,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":9799,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" breeze\"}}}"}
{"elapsed_ms":9799,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":9873,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Curious\"}}}"}
{"elapsed_ms":9873,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":9923,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" tiny\"}}}"}
{"elapsed_ms":9923,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" creatures\"}}}"}
{"elapsed_ms":9980,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fl\"}}}"}
{"elapsed_ms":9980,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"itted\"}}}"}
{"elapsed_ms":10031,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" from\"}}}"}
{"elapsed_ms":10031,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" leaf\"}}}"}
{"elapsed_ms":10051,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":10051,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" leaf\"}}}"}
{"elapsed_ms":10083,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":10083,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" their\"}}}"}
{"elapsed_ms":10146,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" wings\"}}}"}
{"elapsed_ms":10146,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" ir\"}}}"}
{"elapsed_ms":10200,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ides\"}}}"}
{"elapsed_ms":10200,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"cent\"}}}"}
{"elapsed_ms":10285,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" in\"}}}"}
{"elapsed_ms":10285,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":10311,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sunlight\"}}}"}
{"elapsed_ms":10311,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":10386,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":10386,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" soft\"}}}"}
{"elapsed_ms":10429,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" buzzing\"}}}"}
{"elapsed_ms":10429,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":10471,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" chir\"}}}"}
{"elapsed_ms":10471,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ping\"}}}"}
{"elapsed_ms":10528,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" created\"}}}"}
{"elapsed_ms":10528,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" an\"}}}"}
{"elapsed_ms":10623,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" alien\"}}}"}
{"elapsed_ms":10623,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sym\"}}}"}
{"elapsed_ms":10626,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"phony\"}}}"}
{"elapsed_ms":10626,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" that\"}}}"}
{"elapsed_ms":10663,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" echoed\"}}}"}
{"elapsed_ms":10663,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" in\"}}}"}
{"elapsed_ms":10736,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" R\"}}}"}
{"elapsed_ms":10736,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"5\"}}}"}
{"elapsed_ms":10805,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"'s\"}}}"}
{"elapsed_ms":10805,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" auditory\"}}}"}
{"elapsed_ms":10858,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sensors\"}}}"}
{"elapsed_ms":10858,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":10910,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"R\"}}}"}
{"elapsed_ms":10911,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"5\"}}}"}
{"elapsed_ms":10955,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" recorded\"}}}"}
{"elapsed_ms":10955,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" all\"}}}"}
{"elapsed_ms":11006,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":11006,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" could\"}}}"}
{"elapsed_ms":11112,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":11112,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" an\"}}}"}
{"elapsed_ms":11347,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" archive\"}}}"}
{"elapsed_ms":11347,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":11461,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" wonder\"}}}"}
{"elapsed_ms":11461,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" unfolding\"}}}"}
{"elapsed_ms":11518,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" in\"}}}"}
{"elapsed_ms":11518,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":11581,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" digital\"}}}"}
{"elapsed_ms":11581,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" memory\"}}}"}
{"elapsed_ms":11585,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" banks\"}}}"}
{"elapsed_ms":11585,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":11633,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":11633,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" garden\"}}}"}
{"elapsed_ms":11808,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" was\"}}}"}
{"elapsed_ms":11808,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" not\"}}}"}
{"elapsed_ms":11863,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" just\"}}}"}
{"elapsed_ms":11863,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":11921,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" collection\"}}}"}
{"elapsed_ms":11921,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":11995,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" data\"}}}"}
{"elapsed_ms":11995,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" points\"}}}"}
{"elapsed_ms":12021,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\";\"}}}"}
{"elapsed_ms":12021,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":12022,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" was\"}}}"}
{"elapsed_ms":12022,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" alive\"}}}"}
{"elapsed_ms":12102,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" with\"}}}"}
{"elapsed_ms":12102,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":12150,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" vitality\"}}}"}
{"elapsed_ms":12150,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" that\"}}}"}
{"elapsed_ms":12174,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" stirred\"}}}"}
{"elapsed_ms":12174,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" something\"}}}"}
{"elapsed_ms":12218,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" deep\"}}}"}
{"elapsed_ms":12218,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" within\"}}}"}
{"elapsed_ms":12265,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":12265,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" circuits\"}}}"}
{"elapsed_ms":12321,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":12321,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":12378,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sense\"}}}"}
{"elapsed_ms":12378,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" far\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" beyond\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" original\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" programming\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"As\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" hours\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" passed\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" light\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" began\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" w\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ane\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" R\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"5\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" knew\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" had\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" return\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":12918,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" pre\"}}}"}
{"elapsed_ms":12925,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"-program\"}}}"}
{"elapsed_ms":12925,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"med\"}}}"}
{"elapsed_ms":12944,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" tasks\"}}}"}
{"elapsed_ms":12944,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":13009,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Yet\"}}}"}
{"elapsed_ms":13009,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":13012,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" there\"}}}"}
{"elapsed_ms":13012,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" was\"}}}"}
{"elapsed_ms":13060,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":13060,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" change\"}}}"}
{"elapsed_ms":13120,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" now\"}}}"}
{"elapsed_ms":13120,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":13164,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" something\"}}}"}
{"elapsed_ms":13164,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" subtly\"}}}"}
{"elapsed_ms":13210,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" shifted\"}}}"}
{"elapsed_ms":13210,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" within\"}}}"}
{"elapsed_ms":13272,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":13272,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" core\"}}}"}
{"elapsed_ms":13325,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" processing\"}}}"}
{"elapsed_ms":13325,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" unit\"}}}"}
{"elapsed_ms":13405,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":13405,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" The\"}}}"}
{"elapsed_ms":13455,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" vision\"}}}"}
{"elapsed_ms":13455,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":13514,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" this\"}}}"}
{"elapsed_ms":13514,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" hidden\"}}}"}
{"elapsed_ms":13564,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" oasis\"}}}"}
{"elapsed_ms":13564,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" had\"}}}"}
{"elapsed_ms":13585,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" im\"}}}"}
{"elapsed_ms":13585,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"printed\"}}}"}
{"elapsed_ms":13839,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" itself\"}}}"}
{"elapsed_ms":13839,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" in\"}}}"}
{"elapsed_ms":13935,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":13935,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" systems\"}}}"}
{"elapsed_ms":13987,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":13987,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" an\"}}}"}
{"elapsed_ms":14041,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" anomal\"}}}"}
{"elapsed_ms":14041,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"ous\"}}}"}
{"elapsed_ms":14092,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" update\"}}}"}
{"elapsed_ms":14092,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" that\"}}}"}
{"elapsed_ms":14151,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" sparked\"}}}"}
{"elapsed_ms":14151,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":14175,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" nas\"}}}"}
{"elapsed_ms":14175,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"cent\"}}}"}
{"elapsed_ms":14219,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" curiosity\"}}}"}
{"elapsed_ms":14219,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" for\"}}}"}
{"elapsed_ms":14241,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":14241,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" world\"}}}"}
{"elapsed_ms":14302,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" outside\"}}}"}
{"elapsed_ms":14302,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" concrete\"}}}"}
{"elapsed_ms":14373,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" confines\"}}}"}
{"elapsed_ms":14373,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\\n\\n\"}}}"}
{"elapsed_ms":14464,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"With\"}}}"}
{"elapsed_ms":14464,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" newfound\"}}}"}
{"elapsed_ms":14519,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" purpose\"}}}"}
{"elapsed_ms":14519,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":14523,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" R\"}}}"}
{"elapsed_ms":14523,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"5\"}}}"}
{"elapsed_ms":14544,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" resolved\"}}}"}
{"elapsed_ms":14544,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":14595,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" visit\"}}}"}
{"elapsed_ms":14595,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":14661,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" garden\"}}}"}
{"elapsed_ms":14661,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" whenever\"}}}"}
{"elapsed_ms":14717,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":14717,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" could\"}}}"}
{"elapsed_ms":14767,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" escape\"}}}"}
{"elapsed_ms":14767,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":14814,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" routines\"}}}"}
{"elapsed_ms":14814,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":14860,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" pondering\"}}}"}
{"elapsed_ms":14860,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":14906,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" mysteries\"}}}"}
{"elapsed_ms":14906,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" of\"}}}"}
{"elapsed_ms":14955,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" growth\"}}}"}
{"elapsed_ms":14956,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":14985,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" beauty\"}}}"}
{"elapsed_ms":14985,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":14989,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" and\"}}}"}
{"elapsed_ms":14989,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" life\"}}}"}
{"elapsed_ms":15013,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" that\"}}}"}
{"elapsed_ms":15013,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" it\"}}}"}
{"elapsed_ms":15015,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" had\"}}}"}
{"elapsed_ms":15015,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" just\"}}}"}
{"elapsed_ms":15036,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" begun\"}}}"}
{"elapsed_ms":15036,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" to\"}}}"}
{"elapsed_ms":15062,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" fath\"}}}"}
{"elapsed_ms":15062,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"om\"}}}"}
{"elapsed_ms":15086,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":15086,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" Even\"}}}"}
{"elapsed_ms":15108,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" in\"}}}"}
{"elapsed_ms":15108,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" its\"}}}"}
{"elapsed_ms":15155,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" mechanical\"}}}"}
{"elapsed_ms":15155,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" heart\"}}}"}
{"elapsed_ms":15204,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\",\"}}}"}
{"elapsed_ms":15204,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" the\"}}}"}
{"elapsed_ms":15226,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" garden\"}}}"}
{"elapsed_ms":15226,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" had\"}}}"}
{"elapsed_ms":15330,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" planted\"}}}"}
{"elapsed_ms":15330,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" a\"}}}"}
{"elapsed_ms":15386,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\" seed\"}}}"}
{"elapsed_ms":15386,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\".\"}}}"}
{"elapsed_ms":15391,"event_type":"Discriminant(6)","data":"{\"BlockStop\":{\"index\":0,\"block_type\":\"Text\",\"stop_reason\":\"EndTurn\"}}"}
{"elapsed_ms":15391,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":37,\"output_tokens\":534,\"total_tokens\":571,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}

View File

@ -0,0 +1,8 @@
{"timestamp":1767708975,"model":"gpt-4o","description":"Simple greeting test"}
{"elapsed_ms":2195,"event_type":"Discriminant(4)","data":"{\"BlockStart\":{\"index\":0,\"block_type\":\"ToolUse\",\"metadata\":{\"ToolUse\":{\"id\":\"call_44oSltIww2HDJTqJZdlBp6Mw\",\"name\":\"get_weather\"}}}}"}
{"elapsed_ms":2227,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"InputJson\":\"{\\\"\"}}}"}
{"elapsed_ms":2227,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"InputJson\":\"location\"}}}"}
{"elapsed_ms":2255,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"InputJson\":\"\\\":\\\"\"}}}"}
{"elapsed_ms":2255,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"InputJson\":\"Tokyo\"}}}"}
{"elapsed_ms":2263,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"InputJson\":\"\\\"}\"}}}"}
{"elapsed_ms":2268,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":60,\"output_tokens\":14,\"total_tokens\":74,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}

View File

@ -0,0 +1,6 @@
{"timestamp":1767710385,"model":"gpt-4o","description":"Simple text response"}
{"elapsed_ms":1599,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"\"}}}"}
{"elapsed_ms":1606,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"Hello\"}}}"}
{"elapsed_ms":1606,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"Text\":\"!\"}}}"}
{"elapsed_ms":1627,"event_type":"Discriminant(6)","data":"{\"BlockStop\":{\"index\":0,\"block_type\":\"Text\",\"stop_reason\":\"EndTurn\"}}"}
{"elapsed_ms":1627,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":27,\"output_tokens\":2,\"total_tokens\":29,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}

View File

@ -0,0 +1,8 @@
{"timestamp":1767710387,"model":"gpt-4o","description":"Tool call response"}
{"elapsed_ms":1560,"event_type":"Discriminant(4)","data":"{\"BlockStart\":{\"index\":0,\"block_type\":\"ToolUse\",\"metadata\":{\"ToolUse\":{\"id\":\"call_20MaqO3n8LBQG77HCpBYi22A\",\"name\":\"get_weather\"}}}}"}
{"elapsed_ms":1599,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"InputJson\":\"{\\\"\"}}}"}
{"elapsed_ms":1599,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"InputJson\":\"city\"}}}"}
{"elapsed_ms":1625,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"InputJson\":\"\\\":\\\"\"}}}"}
{"elapsed_ms":1625,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"InputJson\":\"Tokyo\"}}}"}
{"elapsed_ms":1631,"event_type":"Discriminant(5)","data":"{\"BlockDelta\":{\"index\":0,\"delta\":{\"InputJson\":\"\\\"}\"}}}"}
{"elapsed_ms":1632,"event_type":"Discriminant(1)","data":"{\"Usage\":{\"input_tokens\":73,\"output_tokens\":14,\"total_tokens\":87,\"cache_read_input_tokens\":null,\"cache_creation_input_tokens\":null}}"}

View File

@ -0,0 +1,23 @@
//! Gemini フィクスチャベースの統合テスト
mod common;
#[test]
fn test_fixture_events_deserialize() {
common::assert_events_deserialize("gemini");
}
#[test]
fn test_fixture_event_sequence() {
common::assert_event_sequence("gemini");
}
#[test]
fn test_fixture_usage_tokens() {
common::assert_usage_tokens("gemini");
}
#[test]
fn test_fixture_with_timeline() {
common::assert_timeline_integration("gemini");
}

View File

@ -0,0 +1,23 @@
//! Ollama フィクスチャベースの統合テスト
mod common;
#[test]
fn test_fixture_events_deserialize() {
common::assert_events_deserialize("ollama");
}
#[test]
fn test_fixture_event_sequence() {
common::assert_event_sequence("ollama");
}
#[test]
fn test_fixture_usage_tokens() {
common::assert_usage_tokens("ollama");
}
#[test]
fn test_fixture_with_timeline() {
common::assert_timeline_integration("ollama");
}

View File

@ -0,0 +1,23 @@
//! OpenAI フィクスチャベースの統合テスト
mod common;
#[test]
fn test_fixture_events_deserialize() {
common::assert_events_deserialize("openai");
}
#[test]
fn test_fixture_event_sequence() {
common::assert_event_sequence("openai");
}
#[test]
fn test_fixture_usage_tokens() {
common::assert_usage_tokens("openai");
}
#[test]
fn test_fixture_with_timeline() {
common::assert_timeline_integration("openai");
}

View File

@ -0,0 +1,273 @@
//! 並列ツール実行のテスト
//!
//! Workerが複数のツールを並列に実行することを確認する。
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::time::{Duration, Instant};
use async_trait::async_trait;
use worker::Worker;
use worker_types::{
ControlFlow, Event, HookError, ResponseStatus, StatusEvent, Tool, ToolCall, ToolError,
ToolResult, WorkerHook,
};
mod common;
use common::MockLlmClient;
// =============================================================================
// Parallel Execution Test Tools
// =============================================================================
/// 一定時間待機してから応答するツール
#[derive(Clone)]
struct SlowTool {
name: String,
delay_ms: u64,
call_count: Arc<AtomicUsize>,
}
impl SlowTool {
fn new(name: impl Into<String>, delay_ms: u64) -> Self {
Self {
name: name.into(),
delay_ms,
call_count: Arc::new(AtomicUsize::new(0)),
}
}
fn call_count(&self) -> usize {
self.call_count.load(Ordering::SeqCst)
}
}
#[async_trait]
impl Tool for SlowTool {
fn name(&self) -> &str {
&self.name
}
fn description(&self) -> &str {
"A tool that waits before responding"
}
fn input_schema(&self) -> serde_json::Value {
serde_json::json!({
"type": "object",
"properties": {}
})
}
async fn execute(&self, _input_json: &str) -> Result<String, ToolError> {
self.call_count.fetch_add(1, Ordering::SeqCst);
tokio::time::sleep(Duration::from_millis(self.delay_ms)).await;
Ok(format!("Completed after {}ms", self.delay_ms))
}
}
// =============================================================================
// Tests
// =============================================================================
/// 複数のツールが並列に実行されることを確認
///
/// 各ツールが100msかかる場合、逐次実行なら300ms以上かかるが、
/// 並列実行なら100ms程度で完了するはず。
#[tokio::test]
async fn test_parallel_tool_execution() {
// 3つのツール呼び出しを含むイベントシーケンス
let events = vec![
Event::tool_use_start(0, "call_1", "slow_tool_1"),
Event::tool_input_delta(0, r#"{}"#),
Event::tool_use_stop(0),
Event::tool_use_start(1, "call_2", "slow_tool_2"),
Event::tool_input_delta(1, r#"{}"#),
Event::tool_use_stop(1),
Event::tool_use_start(2, "call_3", "slow_tool_3"),
Event::tool_input_delta(2, r#"{}"#),
Event::tool_use_stop(2),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
];
let client = MockLlmClient::new(events);
let mut worker = Worker::new(client);
// 各ツールは100ms待機
let tool1 = SlowTool::new("slow_tool_1", 100);
let tool2 = SlowTool::new("slow_tool_2", 100);
let tool3 = SlowTool::new("slow_tool_3", 100);
let tool1_clone = tool1.clone();
let tool2_clone = tool2.clone();
let tool3_clone = tool3.clone();
worker.register_tool(tool1);
worker.register_tool(tool2);
worker.register_tool(tool3);
let start = Instant::now();
let _result = worker.run("Run all tools").await;
let elapsed = start.elapsed();
// 全ツールが呼び出されたことを確認
assert_eq!(tool1_clone.call_count(), 1, "Tool 1 should be called once");
assert_eq!(tool2_clone.call_count(), 1, "Tool 2 should be called once");
assert_eq!(tool3_clone.call_count(), 1, "Tool 3 should be called once");
// 並列実行なら200ms以下で完了するはず逐次なら300ms以上
// マージン込みで250msをしきい値とする
assert!(
elapsed < Duration::from_millis(250),
"Parallel execution should complete in ~100ms, but took {:?}",
elapsed
);
println!("Parallel execution completed in {:?}", elapsed);
}
/// Hook: before_tool_call でスキップされたツールは実行されないことを確認
#[tokio::test]
async fn test_before_tool_call_skip() {
let events = vec![
Event::tool_use_start(0, "call_1", "allowed_tool"),
Event::tool_input_delta(0, r#"{}"#),
Event::tool_use_stop(0),
Event::tool_use_start(1, "call_2", "blocked_tool"),
Event::tool_input_delta(1, r#"{}"#),
Event::tool_use_stop(1),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
];
let client = MockLlmClient::new(events);
let mut worker = Worker::new(client);
let allowed_tool = SlowTool::new("allowed_tool", 10);
let blocked_tool = SlowTool::new("blocked_tool", 10);
let allowed_clone = allowed_tool.clone();
let blocked_clone = blocked_tool.clone();
worker.register_tool(allowed_tool);
worker.register_tool(blocked_tool);
// "blocked_tool" をスキップするHook
struct BlockingHook;
#[async_trait]
impl WorkerHook for BlockingHook {
async fn before_tool_call(
&self,
tool_call: &mut ToolCall,
) -> Result<ControlFlow, HookError> {
if tool_call.name == "blocked_tool" {
Ok(ControlFlow::Skip)
} else {
Ok(ControlFlow::Continue)
}
}
}
worker.add_hook(BlockingHook);
let _result = worker.run("Test hook").await;
// allowed_tool は呼び出されるが、blocked_tool は呼び出されない
assert_eq!(
allowed_clone.call_count(),
1,
"Allowed tool should be called"
);
assert_eq!(
blocked_clone.call_count(),
0,
"Blocked tool should not be called"
);
}
/// Hook: after_tool_call で結果が改変されることを確認
#[tokio::test]
async fn test_after_tool_call_modification() {
// 複数リクエストに対応するレスポンスを準備
let client = MockLlmClient::with_responses(vec![
// 1回目のリクエスト: ツール呼び出し
vec![
Event::tool_use_start(0, "call_1", "test_tool"),
Event::tool_input_delta(0, r#"{}"#),
Event::tool_use_stop(0),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
],
// 2回目のリクエスト: ツール結果を受けてテキストレスポンス
vec![
Event::text_block_start(0),
Event::text_delta(0, "Done!"),
Event::text_block_stop(0, None),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
],
]);
let mut worker = Worker::new(client);
#[derive(Clone)]
struct SimpleTool;
#[async_trait]
impl Tool for SimpleTool {
fn name(&self) -> &str {
"test_tool"
}
fn description(&self) -> &str {
"Test"
}
fn input_schema(&self) -> serde_json::Value {
serde_json::json!({})
}
async fn execute(&self, _: &str) -> Result<String, ToolError> {
Ok("Original Result".to_string())
}
}
worker.register_tool(SimpleTool);
// 結果を改変するHook
struct ModifyingHook {
modified_content: Arc<std::sync::Mutex<Option<String>>>,
}
#[async_trait]
impl WorkerHook for ModifyingHook {
async fn after_tool_call(
&self,
tool_result: &mut ToolResult,
) -> Result<ControlFlow, HookError> {
tool_result.content = format!("[Modified] {}", tool_result.content);
*self.modified_content.lock().unwrap() = Some(tool_result.content.clone());
Ok(ControlFlow::Continue)
}
}
let modified_content = Arc::new(std::sync::Mutex::new(None));
worker.add_hook(ModifyingHook {
modified_content: modified_content.clone(),
});
let result = worker.run("Test modification").await;
assert!(result.is_ok(), "Worker should complete: {:?}", result);
// Hookが呼ばれて内容が改変されたことを確認
let content = modified_content.lock().unwrap().clone();
assert!(content.is_some(), "Hook should have been called");
assert!(
content.unwrap().contains("[Modified]"),
"Result should be modified"
);
}

View File

@ -0,0 +1,234 @@
//! WorkerSubscriberのテスト
//!
//! WorkerSubscriberを使ってイベントを購読するテスト
mod common;
use std::sync::{Arc, Mutex};
use common::MockLlmClient;
use worker::subscriber::WorkerSubscriber;
use worker::Worker;
use worker_types::{
ErrorEvent, Event, ResponseStatus, StatusEvent, TextBlockEvent, ToolCall, ToolUseBlockEvent,
UsageEvent,
};
// =============================================================================
// Test Subscriber
// =============================================================================
/// テスト用のシンプルなSubscriber実装
struct TestSubscriber {
// 記録用のバッファ
text_deltas: Arc<Mutex<Vec<String>>>,
text_completes: Arc<Mutex<Vec<String>>>,
tool_call_completes: Arc<Mutex<Vec<ToolCall>>>,
usage_events: Arc<Mutex<Vec<UsageEvent>>>,
status_events: Arc<Mutex<Vec<StatusEvent>>>,
turn_starts: Arc<Mutex<Vec<usize>>>,
turn_ends: Arc<Mutex<Vec<usize>>>,
}
impl TestSubscriber {
fn new() -> Self {
Self {
text_deltas: Arc::new(Mutex::new(Vec::new())),
text_completes: Arc::new(Mutex::new(Vec::new())),
tool_call_completes: Arc::new(Mutex::new(Vec::new())),
usage_events: Arc::new(Mutex::new(Vec::new())),
status_events: Arc::new(Mutex::new(Vec::new())),
turn_starts: Arc::new(Mutex::new(Vec::new())),
turn_ends: Arc::new(Mutex::new(Vec::new())),
}
}
}
impl WorkerSubscriber for TestSubscriber {
type TextBlockScope = String;
type ToolUseBlockScope = ();
fn on_text_block(&mut self, buffer: &mut String, event: &TextBlockEvent) {
if let TextBlockEvent::Delta(text) = event {
buffer.push_str(text);
self.text_deltas.lock().unwrap().push(text.clone());
}
}
fn on_text_complete(&mut self, text: &str) {
self.text_completes.lock().unwrap().push(text.to_string());
}
fn on_tool_use_block(&mut self, _scope: &mut (), _event: &ToolUseBlockEvent) {
// 必要に応じて処理
}
fn on_tool_call_complete(&mut self, call: &ToolCall) {
self.tool_call_completes.lock().unwrap().push(call.clone());
}
fn on_usage(&mut self, event: &UsageEvent) {
self.usage_events.lock().unwrap().push(event.clone());
}
fn on_status(&mut self, event: &StatusEvent) {
self.status_events.lock().unwrap().push(event.clone());
}
fn on_error(&mut self, _event: &ErrorEvent) {
// 必要に応じて処理
}
fn on_turn_start(&mut self, turn: usize) {
self.turn_starts.lock().unwrap().push(turn);
}
fn on_turn_end(&mut self, turn: usize) {
self.turn_ends.lock().unwrap().push(turn);
}
}
// =============================================================================
// Tests
// =============================================================================
/// WorkerSubscriberがテキストブロックイベントを正しく受け取ることを確認
#[tokio::test]
async fn test_subscriber_text_block_events() {
// テキストレスポンスを含むイベントシーケンス
let events = vec![
Event::text_block_start(0),
Event::text_delta(0, "Hello, "),
Event::text_delta(0, "World!"),
Event::text_block_stop(0, None),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
];
let client = MockLlmClient::new(events);
let mut worker = Worker::new(client);
// Subscriberを登録
let subscriber = TestSubscriber::new();
let text_deltas = subscriber.text_deltas.clone();
let text_completes = subscriber.text_completes.clone();
worker.subscribe(subscriber);
// 実行
let result = worker.run("Greet me").await;
assert!(result.is_ok(), "Worker should complete: {:?}", result);
// デルタが収集されていることを確認
let deltas = text_deltas.lock().unwrap();
assert_eq!(deltas.len(), 2);
assert_eq!(deltas[0], "Hello, ");
assert_eq!(deltas[1], "World!");
// 完了テキストが収集されていることを確認
let completes = text_completes.lock().unwrap();
assert_eq!(completes.len(), 1);
assert_eq!(completes[0], "Hello, World!");
}
/// WorkerSubscriberがツール呼び出し完了イベントを正しく受け取ることを確認
#[tokio::test]
async fn test_subscriber_tool_call_complete() {
// ツール呼び出しを含むイベントシーケンス
let events = vec![
Event::tool_use_start(0, "call_123", "get_weather"),
Event::tool_input_delta(0, r#"{"city":"#),
Event::tool_input_delta(0, r#""Tokyo"}"#),
Event::tool_use_stop(0),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
];
let client = MockLlmClient::new(events);
let mut worker = Worker::new(client);
// Subscriberを登録
let subscriber = TestSubscriber::new();
let tool_call_completes = subscriber.tool_call_completes.clone();
worker.subscribe(subscriber);
// 実行
let _ = worker.run("Weather please").await;
// ツール呼び出し完了が収集されていることを確認
let completes = tool_call_completes.lock().unwrap();
assert_eq!(completes.len(), 1);
assert_eq!(completes[0].name, "get_weather");
assert_eq!(completes[0].id, "call_123");
assert_eq!(completes[0].input["city"], "Tokyo");
}
/// WorkerSubscriberがターンイベントを正しく受け取ることを確認
#[tokio::test]
async fn test_subscriber_turn_events() {
let events = vec![
Event::text_block_start(0),
Event::text_delta(0, "Done!"),
Event::text_block_stop(0, None),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
];
let client = MockLlmClient::new(events);
let mut worker = Worker::new(client);
// Subscriberを登録
let subscriber = TestSubscriber::new();
let turn_starts = subscriber.turn_starts.clone();
let turn_ends = subscriber.turn_ends.clone();
worker.subscribe(subscriber);
// 実行
let result = worker.run("Do something").await;
assert!(result.is_ok());
// ターンイベントが収集されていることを確認
let starts = turn_starts.lock().unwrap();
let ends = turn_ends.lock().unwrap();
assert_eq!(starts.len(), 1);
assert_eq!(starts[0], 0); // 最初のターン
assert_eq!(ends.len(), 1);
assert_eq!(ends[0], 0);
}
/// WorkerSubscriberがUsageイベントを正しく受け取ることを確認
#[tokio::test]
async fn test_subscriber_usage_events() {
let events = vec![
Event::text_block_start(0),
Event::text_delta(0, "Hello"),
Event::text_block_stop(0, None),
Event::usage(100, 50),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
];
let client = MockLlmClient::new(events);
let mut worker = Worker::new(client);
// Subscriberを登録
let subscriber = TestSubscriber::new();
let usage_events = subscriber.usage_events.clone();
worker.subscribe(subscriber);
// 実行
let _ = worker.run("Hello").await;
// Usageイベントが収集されていることを確認
let usages = usage_events.lock().unwrap();
assert_eq!(usages.len(), 1);
assert_eq!(usages[0].input_tokens, Some(100));
assert_eq!(usages[0].output_tokens, Some(50));
}

View File

@ -0,0 +1,227 @@
//! ツールマクロのテスト
//!
//! `#[tool_registry]` と `#[tool]` マクロの動作を確認する。
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
// マクロ展開に必要なインポート
use schemars;
use serde;
use worker_macros::tool_registry;
use worker_types::Tool;
// =============================================================================
// Test: Basic Tool Generation
// =============================================================================
/// シンプルなコンテキスト構造体
#[derive(Clone)]
struct SimpleContext {
prefix: String,
}
#[tool_registry]
impl SimpleContext {
/// メッセージに挨拶を追加する
///
/// 指定されたメッセージにプレフィックスを付けて返します。
#[tool]
async fn greet(&self, message: String) -> String {
format!("{}: {}", self.prefix, message)
}
/// 二つの数を足す
#[tool]
async fn add(&self, a: i32, b: i32) -> i32 {
a + b
}
/// 引数なしのツール
#[tool]
async fn get_prefix(&self) -> String {
self.prefix.clone()
}
}
#[tokio::test]
async fn test_basic_tool_generation() {
let ctx = SimpleContext {
prefix: "Hello".to_string(),
};
// ファクトリメソッドでツールを取得
let greet_tool = ctx.greet_tool();
// 名前の確認
assert_eq!(greet_tool.name(), "greet");
// 説明の確認docコメントから取得
let desc = greet_tool.description();
assert!(
desc.contains("メッセージに挨拶を追加する"),
"Description should contain doc comment: {}",
desc
);
// スキーマの確認
let schema = greet_tool.input_schema();
println!("Schema: {}", serde_json::to_string_pretty(&schema).unwrap());
assert!(
schema.get("properties").is_some(),
"Schema should have properties"
);
// 実行テスト
let result = greet_tool.execute(r#"{"message": "World"}"#).await;
assert!(result.is_ok(), "Should execute successfully");
let output = result.unwrap();
assert!(output.contains("Hello"), "Output should contain prefix");
assert!(output.contains("World"), "Output should contain message");
}
#[tokio::test]
async fn test_multiple_arguments() {
let ctx = SimpleContext {
prefix: "".to_string(),
};
let add_tool = ctx.add_tool();
assert_eq!(add_tool.name(), "add");
let result = add_tool.execute(r#"{"a": 10, "b": 20}"#).await;
assert!(result.is_ok());
let output = result.unwrap();
assert!(output.contains("30"), "Should contain sum: {}", output);
}
#[tokio::test]
async fn test_no_arguments() {
let ctx = SimpleContext {
prefix: "TestPrefix".to_string(),
};
let get_prefix_tool = ctx.get_prefix_tool();
assert_eq!(get_prefix_tool.name(), "get_prefix");
// 空のJSONオブジェクトで呼び出し
let result = get_prefix_tool.execute(r#"{}"#).await;
assert!(result.is_ok());
let output = result.unwrap();
assert!(
output.contains("TestPrefix"),
"Should contain prefix: {}",
output
);
}
#[tokio::test]
async fn test_invalid_arguments() {
let ctx = SimpleContext {
prefix: "".to_string(),
};
let greet_tool = ctx.greet_tool();
// 不正なJSON
let result = greet_tool.execute(r#"{"wrong_field": "value"}"#).await;
assert!(result.is_err(), "Should fail with invalid arguments");
}
// =============================================================================
// Test: Result Return Type
// =============================================================================
#[derive(Clone)]
struct FallibleContext;
#[derive(Debug)]
struct MyError(String);
impl std::fmt::Display for MyError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
#[tool_registry]
impl FallibleContext {
/// 与えられた値を検証する
#[tool]
async fn validate(&self, value: i32) -> Result<String, MyError> {
if value > 0 {
Ok(format!("Valid: {}", value))
} else {
Err(MyError("Value must be positive".to_string()))
}
}
}
#[tokio::test]
async fn test_result_return_type_success() {
let ctx = FallibleContext;
let validate_tool = ctx.validate_tool();
let result = validate_tool.execute(r#"{"value": 42}"#).await;
assert!(result.is_ok(), "Should succeed for positive value");
let output = result.unwrap();
assert!(output.contains("Valid"), "Should contain Valid: {}", output);
}
#[tokio::test]
async fn test_result_return_type_error() {
let ctx = FallibleContext;
let validate_tool = ctx.validate_tool();
let result = validate_tool.execute(r#"{"value": -1}"#).await;
assert!(result.is_err(), "Should fail for negative value");
let err = result.unwrap_err();
assert!(
err.to_string().contains("positive"),
"Error should mention positive: {}",
err
);
}
// =============================================================================
// Test: Synchronous Methods
// =============================================================================
#[derive(Clone)]
struct SyncContext {
counter: Arc<AtomicUsize>,
}
#[tool_registry]
impl SyncContext {
/// カウンターをインクリメントして返す (非async)
#[tool]
fn increment(&self) -> usize {
self.counter.fetch_add(1, Ordering::SeqCst) + 1
}
}
#[tokio::test]
async fn test_sync_method() {
let ctx = SyncContext {
counter: Arc::new(AtomicUsize::new(0)),
};
let increment_tool = ctx.increment_tool();
// 3回実行
let result1 = increment_tool.execute(r#"{}"#).await;
let result2 = increment_tool.execute(r#"{}"#).await;
let result3 = increment_tool.execute(r#"{}"#).await;
assert!(result1.is_ok());
assert!(result2.is_ok());
assert!(result3.is_ok());
// カウンターは3になっているはず
assert_eq!(ctx.counter.load(Ordering::SeqCst), 3);
}

View File

@ -0,0 +1,234 @@
//! Workerフィクスチャベースの統合テスト
//!
//! 記録されたAPIレスポンスを使ってWorkerの動作をテストする。
//! APIキー不要でローカルで実行可能。
mod common;
use std::path::Path;
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use async_trait::async_trait;
use common::MockLlmClient;
use worker::Worker;
use worker_types::{Tool, ToolError};
/// フィクスチャディレクトリのパス
fn fixtures_dir() -> std::path::PathBuf {
Path::new(env!("CARGO_MANIFEST_DIR")).join("tests/fixtures/anthropic")
}
/// シンプルなテスト用ツール
#[derive(Clone)]
struct MockWeatherTool {
call_count: Arc<AtomicUsize>,
}
impl MockWeatherTool {
fn new() -> Self {
Self {
call_count: Arc::new(AtomicUsize::new(0)),
}
}
fn get_call_count(&self) -> usize {
self.call_count.load(Ordering::SeqCst)
}
}
#[async_trait]
impl Tool for MockWeatherTool {
fn name(&self) -> &str {
"get_weather"
}
fn description(&self) -> &str {
"Get the current weather for a city"
}
fn input_schema(&self) -> serde_json::Value {
serde_json::json!({
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city name"
}
},
"required": ["city"]
})
}
async fn execute(&self, input_json: &str) -> Result<String, ToolError> {
self.call_count.fetch_add(1, Ordering::SeqCst);
// 入力をパース
let input: serde_json::Value = serde_json::from_str(input_json)
.map_err(|e| ToolError::InvalidArgument(e.to_string()))?;
let city = input["city"].as_str().unwrap_or("Unknown");
// モックのレスポンスを返す
Ok(format!("Weather in {}: Sunny, 22°C", city))
}
}
// =============================================================================
// Basic Fixture Tests
// =============================================================================
/// MockLlmClientがJSONLフィクスチャファイルから正しくイベントをロードできることを確認
///
/// 既存のanthropic_*.jsonlファイルを使用し、イベントがパース・ロードされることを検証する。
#[test]
fn test_mock_client_from_fixture() {
// 既存のフィクスチャをロード
let fixture_path = fixtures_dir().join("anthropic_1767624445.jsonl");
if !fixture_path.exists() {
println!("Fixture not found, skipping test");
return;
}
let client = MockLlmClient::from_fixture(&fixture_path).unwrap();
assert!(client.event_count() > 0, "Should have loaded events");
println!("Loaded {} events from fixture", client.event_count());
}
/// MockLlmClientが直接指定されたイベントリストで正しく動作することを確認
///
/// fixtureファイルを使わず、プログラムでイベントを構築してクライアントを作成する。
#[test]
fn test_mock_client_from_events() {
use worker_types::Event;
// 直接イベントを指定
let events = vec![
Event::text_block_start(0),
Event::text_delta(0, "Hello!"),
Event::text_block_stop(0, None),
];
let client = MockLlmClient::new(events);
assert_eq!(client.event_count(), 3);
}
// =============================================================================
// Worker Tests with Fixtures
// =============================================================================
/// Workerがシンプルなテキストレスポンスを正しく処理できることを確認
///
/// simple_text.jsonlフィクスチャを使用し、ツール呼び出しなしのシナリオをテストする。
/// フィクスチャがない場合はスキップされる。
#[tokio::test]
async fn test_worker_simple_text_response() {
let fixture_path = fixtures_dir().join("simple_text.jsonl");
if !fixture_path.exists() {
println!("Fixture not found: {:?}, skipping test", fixture_path);
println!("Run: cargo run --example record_worker_test");
return;
}
let client = MockLlmClient::from_fixture(&fixture_path).unwrap();
let mut worker = Worker::new(client);
// シンプルなメッセージを送信
let result = worker.run("Hello").await;
assert!(result.is_ok(), "Worker should complete successfully");
}
/// Workerがツール呼び出しを含むレスポンスを正しく処理できることを確認
///
/// tool_call.jsonlフィクスチャを使用し、MockWeatherToolが呼び出されることをテストする。
/// max_turns=1に設定し、ツール実行後のループを防止。
#[tokio::test]
async fn test_worker_tool_call() {
let fixture_path = fixtures_dir().join("tool_call.jsonl");
if !fixture_path.exists() {
println!("Fixture not found: {:?}, skipping test", fixture_path);
println!("Run: cargo run --example record_worker_test");
return;
}
let client = MockLlmClient::from_fixture(&fixture_path).unwrap();
let mut worker = Worker::new(client);
// ツールを登録
let weather_tool = MockWeatherTool::new();
let tool_for_check = weather_tool.clone();
worker.register_tool(weather_tool);
// メッセージを送信
let _result = worker.run("What's the weather in Tokyo?").await;
// ツールが呼び出されたことを確認
// Note: max_turns=1なのでツール結果後のリクエストは送信されない
let call_count = tool_for_check.get_call_count();
println!("Tool was called {} times", call_count);
// フィクスチャにToolUseが含まれていればツールが呼び出されるはず
// ただしmax_turns=1なので1回で終了
}
/// fixtureファイルなしでWorkerが動作することを確認
///
/// プログラムでイベントシーケンスを構築し、MockLlmClientに渡してテストする。
/// テストの独立性を高め、外部ファイルへの依存を排除したい場合に有用。
#[tokio::test]
async fn test_worker_with_programmatic_events() {
use worker_types::{Event, ResponseStatus, StatusEvent};
// プログラムでイベントシーケンスを構築
let events = vec![
Event::text_block_start(0),
Event::text_delta(0, "Hello, "),
Event::text_delta(0, "World!"),
Event::text_block_stop(0, None),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
];
let client = MockLlmClient::new(events);
let mut worker = Worker::new(client);
let result = worker.run("Greet me").await;
assert!(result.is_ok(), "Worker should complete successfully");
}
/// ToolCallCollectorがToolUseブロックイベントから正しくToolCallを収集することを確認
///
/// Timelineにイベントをディスパッチし、ToolCallCollectorが
/// id, name, inputJSONを正しく抽出できることを検証する。
#[tokio::test]
async fn test_tool_call_collector_integration() {
use worker::timeline::{Timeline, ToolCallCollector};
use worker_types::Event;
// ToolUseブロックを含むイベントシーケンス
let events = vec![
Event::tool_use_start(0, "call_123", "get_weather"),
Event::tool_input_delta(0, r#"{"city":"#),
Event::tool_input_delta(0, r#""Tokyo"}"#),
Event::tool_use_stop(0),
];
let collector = ToolCallCollector::new();
let mut timeline = Timeline::new();
timeline.on_tool_use_block(collector.clone());
// イベントをディスパッチ
for event in &events {
timeline.dispatch(event);
}
// 収集されたToolCallを確認
let calls = collector.take_collected();
assert_eq!(calls.len(), 1, "Should collect one tool call");
assert_eq!(calls[0].name, "get_weather");
assert_eq!(calls[0].id, "call_123");
assert_eq!(calls[0].input["city"], "Tokyo");
}

View File

@ -0,0 +1,372 @@
//! Worker状態管理のテスト
//!
//! Type-stateパターンMutable/Lockedによる状態遷移と
//! ターン間の状態保持をテストする。
mod common;
use common::MockLlmClient;
use worker::Worker;
use worker_types::{Event, Message, MessageContent, ResponseStatus, StatusEvent};
// =============================================================================
// Mutable状態のテスト
// =============================================================================
/// Mutable状態でシステムプロンプトを設定できることを確認
#[test]
fn test_mutable_set_system_prompt() {
let client = MockLlmClient::new(vec![]);
let mut worker = Worker::new(client);
assert!(worker.get_system_prompt().is_none());
worker.set_system_prompt("You are a helpful assistant.");
assert_eq!(
worker.get_system_prompt(),
Some("You are a helpful assistant.")
);
}
/// Mutable状態で履歴を自由に編集できることを確認
#[test]
fn test_mutable_history_manipulation() {
let client = MockLlmClient::new(vec![]);
let mut worker = Worker::new(client);
// 初期状態は空
assert!(worker.history().is_empty());
// 履歴を追加
worker.push_message(Message::user("Hello"));
worker.push_message(Message::assistant("Hi there!"));
assert_eq!(worker.history().len(), 2);
// 履歴への可変アクセス
worker.history_mut().push(Message::user("How are you?"));
assert_eq!(worker.history().len(), 3);
// 履歴をクリア
worker.clear_history();
assert!(worker.history().is_empty());
// 履歴を設定
let messages = vec![Message::user("Test"), Message::assistant("Response")];
worker.set_history(messages);
assert_eq!(worker.history().len(), 2);
}
/// ビルダーパターンでWorkerを構築できることを確認
#[test]
fn test_mutable_builder_pattern() {
let client = MockLlmClient::new(vec![]);
let worker = Worker::new(client)
.system_prompt("System prompt")
.with_message(Message::user("Hello"))
.with_message(Message::assistant("Hi!"))
.with_messages(vec![
Message::user("How are you?"),
Message::assistant("I'm fine!"),
]);
assert_eq!(worker.get_system_prompt(), Some("System prompt"));
assert_eq!(worker.history().len(), 4);
}
/// extend_historyで複数メッセージを追加できることを確認
#[test]
fn test_mutable_extend_history() {
let client = MockLlmClient::new(vec![]);
let mut worker = Worker::new(client);
worker.push_message(Message::user("First"));
worker.extend_history(vec![
Message::assistant("Response 1"),
Message::user("Second"),
Message::assistant("Response 2"),
]);
assert_eq!(worker.history().len(), 4);
}
// =============================================================================
// 状態遷移テスト
// =============================================================================
/// lock()でMutable -> Locked状態に遷移することを確認
#[test]
fn test_lock_transition() {
let client = MockLlmClient::new(vec![]);
let mut worker = Worker::new(client);
worker.set_system_prompt("System");
worker.push_message(Message::user("Hello"));
worker.push_message(Message::assistant("Hi"));
// ロック
let locked_worker = worker.lock();
// Locked状態でも履歴とシステムプロンプトにアクセス可能
assert_eq!(locked_worker.get_system_prompt(), Some("System"));
assert_eq!(locked_worker.history().len(), 2);
assert_eq!(locked_worker.locked_prefix_len(), 2);
}
/// unlock()でLocked -> Mutable状態に遷移することを確認
#[test]
fn test_unlock_transition() {
let client = MockLlmClient::new(vec![]);
let mut worker = Worker::new(client);
worker.push_message(Message::user("Hello"));
let locked_worker = worker.lock();
// アンロック
let mut worker = locked_worker.unlock();
// Mutable状態に戻ったので履歴操作が可能
worker.push_message(Message::assistant("Hi"));
worker.clear_history();
assert!(worker.history().is_empty());
}
// =============================================================================
// ターン実行と状態保持のテスト
// =============================================================================
/// Mutable状態でターンを実行し、履歴が正しく更新されることを確認
#[tokio::test]
async fn test_mutable_run_updates_history() {
let events = vec![
Event::text_block_start(0),
Event::text_delta(0, "Hello, I'm an assistant!"),
Event::text_block_stop(0, None),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
];
let client = MockLlmClient::new(events);
let mut worker = Worker::new(client);
// 実行
let result = worker.run("Hi there").await;
assert!(result.is_ok());
// 履歴が更新されている
let history = worker.history();
assert_eq!(history.len(), 2); // user + assistant
// ユーザーメッセージ
assert!(matches!(
&history[0].content,
MessageContent::Text(t) if t == "Hi there"
));
// アシスタントメッセージ
assert!(matches!(
&history[1].content,
MessageContent::Text(t) if t == "Hello, I'm an assistant!"
));
}
/// Locked状態で複数ターンを実行し、履歴が正しく累積することを確認
#[tokio::test]
async fn test_locked_multi_turn_history_accumulation() {
// 2回のリクエストに対応するレスポンスを準備
let client = MockLlmClient::with_responses(vec![
// 1回目のレスポンス
vec![
Event::text_block_start(0),
Event::text_delta(0, "Nice to meet you!"),
Event::text_block_stop(0, None),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
],
// 2回目のレスポンス
vec![
Event::text_block_start(0),
Event::text_delta(0, "I can help with that."),
Event::text_block_stop(0, None),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
],
]);
let worker = Worker::new(client).system_prompt("You are helpful.");
// ロック(システムプロンプト設定後)
let mut locked_worker = worker.lock();
assert_eq!(locked_worker.locked_prefix_len(), 0); // メッセージはまだない
// 1ターン目
let result1 = locked_worker.run("Hello!").await;
assert!(result1.is_ok());
assert_eq!(locked_worker.history().len(), 2); // user + assistant
// 2ターン目
let result2 = locked_worker.run("Can you help me?").await;
assert!(result2.is_ok());
assert_eq!(locked_worker.history().len(), 4); // 2 * (user + assistant)
// 履歴の内容を確認
let history = locked_worker.history();
// 1ターン目のユーザーメッセージ
assert!(matches!(&history[0].content, MessageContent::Text(t) if t == "Hello!"));
// 1ターン目のアシスタントメッセージ
assert!(matches!(&history[1].content, MessageContent::Text(t) if t == "Nice to meet you!"));
// 2ターン目のユーザーメッセージ
assert!(matches!(&history[2].content, MessageContent::Text(t) if t == "Can you help me?"));
// 2ターン目のアシスタントメッセージ
assert!(matches!(&history[3].content, MessageContent::Text(t) if t == "I can help with that."));
}
/// locked_prefix_lenがロック時点の履歴長を正しく記録することを確認
#[tokio::test]
async fn test_locked_prefix_len_tracking() {
let client = MockLlmClient::with_responses(vec![
vec![
Event::text_block_start(0),
Event::text_delta(0, "Response 1"),
Event::text_block_stop(0, None),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
],
vec![
Event::text_block_start(0),
Event::text_delta(0, "Response 2"),
Event::text_block_stop(0, None),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
],
]);
let mut worker = Worker::new(client);
// 事前にメッセージを追加
worker.push_message(Message::user("Pre-existing message 1"));
worker.push_message(Message::assistant("Pre-existing response 1"));
assert_eq!(worker.history().len(), 2);
// ロック
let mut locked_worker = worker.lock();
assert_eq!(locked_worker.locked_prefix_len(), 2); // ロック時点で2メッセージ
// ターン実行
locked_worker.run("New message").await.unwrap();
// 履歴は増えるが、locked_prefix_lenは変わらない
assert_eq!(locked_worker.history().len(), 4); // 2 + 2
assert_eq!(locked_worker.locked_prefix_len(), 2); // 変わらない
}
/// ターンカウントが正しくインクリメントされることを確認
#[tokio::test]
async fn test_turn_count_increment() {
let client = MockLlmClient::with_responses(vec![
vec![
Event::text_block_start(0),
Event::text_delta(0, "Turn 1"),
Event::text_block_stop(0, None),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
],
vec![
Event::text_block_start(0),
Event::text_delta(0, "Turn 2"),
Event::text_block_stop(0, None),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
],
]);
let mut worker = Worker::new(client);
assert_eq!(worker.turn_count(), 0);
worker.run("First").await.unwrap();
assert_eq!(worker.turn_count(), 1);
worker.run("Second").await.unwrap();
assert_eq!(worker.turn_count(), 2);
}
/// unlock後に履歴を編集し、再度lockできることを確認
#[tokio::test]
async fn test_unlock_edit_relock() {
let client = MockLlmClient::with_responses(vec![vec![
Event::text_block_start(0),
Event::text_delta(0, "Response"),
Event::text_block_stop(0, None),
Event::Status(StatusEvent {
status: ResponseStatus::Completed,
}),
]]);
let worker = Worker::new(client)
.with_message(Message::user("Hello"))
.with_message(Message::assistant("Hi"));
// ロック -> アンロック
let locked = worker.lock();
assert_eq!(locked.locked_prefix_len(), 2);
let mut unlocked = locked.unlock();
// 履歴を編集
unlocked.clear_history();
unlocked.push_message(Message::user("Fresh start"));
// 再ロック
let relocked = unlocked.lock();
assert_eq!(relocked.history().len(), 1);
assert_eq!(relocked.locked_prefix_len(), 1);
}
// =============================================================================
// システムプロンプト保持のテスト
// =============================================================================
/// Locked状態でもシステムプロンプトが保持されることを確認
#[test]
fn test_system_prompt_preserved_in_locked_state() {
let client = MockLlmClient::new(vec![]);
let worker = Worker::new(client).system_prompt("Important system prompt");
let locked = worker.lock();
assert_eq!(locked.get_system_prompt(), Some("Important system prompt"));
let unlocked = locked.unlock();
assert_eq!(
unlocked.get_system_prompt(),
Some("Important system prompt")
);
}
/// unlock -> 再lock でシステムプロンプトを変更できることを確認
#[test]
fn test_system_prompt_change_after_unlock() {
let client = MockLlmClient::new(vec![]);
let worker = Worker::new(client).system_prompt("Original prompt");
let locked = worker.lock();
let mut unlocked = locked.unlock();
unlocked.set_system_prompt("New prompt");
assert_eq!(unlocked.get_system_prompt(), Some("New prompt"));
let relocked = unlocked.lock();
assert_eq!(relocked.get_system_prompt(), Some("New prompt"));
}